Updated with evaluation for ASR hands-on
Browse files
app.py
CHANGED
@@ -17,26 +17,66 @@ def pass_emoji(passed):
|
|
17 |
api = HfApi()
|
18 |
|
19 |
|
20 |
-
def
|
21 |
"""
|
22 |
-
List the user's
|
23 |
:param hf_username: User HF username
|
24 |
"""
|
25 |
-
|
26 |
-
models = api.list_models(author=hf_username, filter=["audio-classification"])
|
27 |
user_model_ids = [x.modelId for x in models]
|
28 |
-
models_gtzan = []
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
for model in user_model_ids:
|
31 |
meta = get_metadata(model)
|
32 |
if meta is None:
|
33 |
continue
|
34 |
try:
|
35 |
-
if meta["datasets"] == [
|
36 |
-
|
37 |
except: continue
|
38 |
-
return
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def get_metadata(model_id):
|
42 |
"""
|
@@ -51,48 +91,34 @@ def get_metadata(model_id):
|
|
51 |
return None
|
52 |
|
53 |
|
54 |
-
def
|
55 |
"""
|
56 |
-
Extract the
|
57 |
:param model_card_content: model card content
|
58 |
"""
|
59 |
accuracy_pattern = r"Accuracy: (\d+\.\d+)"
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
if match:
|
62 |
-
|
63 |
-
return float(
|
64 |
else:
|
65 |
-
return None
|
66 |
|
67 |
|
68 |
-
def
|
69 |
"""
|
70 |
Get model card and parse it
|
71 |
:param model_id: model id
|
72 |
"""
|
73 |
-
card = ModelCard.load(
|
74 |
-
return
|
75 |
-
|
76 |
-
|
77 |
-
def calculate_best_acc_result(user_model_ids):
|
78 |
-
"""
|
79 |
-
Calculate the best results of a unit
|
80 |
-
:param user_model_ids: RL models of a user
|
81 |
-
"""
|
82 |
-
|
83 |
-
best_result = -100
|
84 |
-
best_model = ""
|
85 |
-
|
86 |
-
for model in user_model_ids:
|
87 |
-
meta = get_metadata(model)
|
88 |
-
if meta is None:
|
89 |
-
continue
|
90 |
-
accuracy = parse_metrics_accuracy(model)
|
91 |
-
if accuracy > best_result:
|
92 |
-
best_result = accuracy
|
93 |
-
best_model = meta['model-index'][0]["name"]
|
94 |
-
|
95 |
-
return best_result, best_model
|
96 |
|
97 |
|
98 |
def certification(hf_username):
|
@@ -106,9 +132,9 @@ def certification(hf_username):
|
|
106 |
"passed_": False
|
107 |
},
|
108 |
{
|
109 |
-
"unit": "Unit 5:
|
110 |
-
"task": "
|
111 |
-
"baseline_metric": 0.
|
112 |
"best_result": 0,
|
113 |
"best_model_id": "",
|
114 |
"passed_": False
|
@@ -133,17 +159,32 @@ def certification(hf_username):
|
|
133 |
|
134 |
for unit in results_certification:
|
135 |
unit["passed"] = pass_emoji(unit["passed_"])
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
print(results_certification)
|
149 |
|
@@ -151,7 +192,6 @@ def certification(hf_username):
|
|
151 |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
152 |
return df
|
153 |
|
154 |
-
|
155 |
with gr.Blocks() as demo:
|
156 |
gr.Markdown(f"""
|
157 |
# π Check your progress in the Audio Course π
|
|
|
17 |
api = HfApi()
|
18 |
|
19 |
|
20 |
+
def get_user_models(hf_username, task):
|
21 |
"""
|
22 |
+
List the user's models for a given task
|
23 |
:param hf_username: User HF username
|
24 |
"""
|
25 |
+
models = api.list_models(author=hf_username, filter=[task])
|
|
|
26 |
user_model_ids = [x.modelId for x in models]
|
|
|
27 |
|
28 |
+
match task:
|
29 |
+
case "audio-classification":
|
30 |
+
dataset = 'marsyas/gtzan'
|
31 |
+
case "automatic-speech-recognition":
|
32 |
+
dataset = 'PolyAI/minds14'
|
33 |
+
case _:
|
34 |
+
print("Unsupported task")
|
35 |
+
|
36 |
+
dataset_specific_models = []
|
37 |
+
|
38 |
for model in user_model_ids:
|
39 |
meta = get_metadata(model)
|
40 |
if meta is None:
|
41 |
continue
|
42 |
try:
|
43 |
+
if meta["datasets"] == [dataset]:
|
44 |
+
dataset_specific_models.append(model)
|
45 |
except: continue
|
46 |
+
return dataset_specific_models
|
47 |
|
48 |
+
def calculate_best_result(user_models, task):
|
49 |
+
"""
|
50 |
+
Calculate the best results of a unit for a given task
|
51 |
+
:param user_model_ids: models of a user
|
52 |
+
"""
|
53 |
+
|
54 |
+
best_model = ""
|
55 |
+
|
56 |
+
if task == "audio-classification":
|
57 |
+
best_result = -100
|
58 |
+
larger_is_better = True
|
59 |
+
elif task == "automatic-speech-recognition":
|
60 |
+
best_result = 100
|
61 |
+
larger_is_better = False
|
62 |
+
|
63 |
+
for model in user_models:
|
64 |
+
meta = get_metadata(model)
|
65 |
+
if meta is None:
|
66 |
+
continue
|
67 |
+
metric = parse_metrics(model, task)
|
68 |
+
|
69 |
+
if larger_is_better:
|
70 |
+
if metric > best_result:
|
71 |
+
best_result = metric
|
72 |
+
best_model = meta['model-index'][0]["name"]
|
73 |
+
else:
|
74 |
+
if metric < best_result:
|
75 |
+
best_result = metric
|
76 |
+
best_model = meta['model-index'][0]["name"]
|
77 |
+
|
78 |
+
return best_result, best_model
|
79 |
+
|
80 |
|
81 |
def get_metadata(model_id):
|
82 |
"""
|
|
|
91 |
return None
|
92 |
|
93 |
|
94 |
+
def extract_metric(model_card_content, task):
|
95 |
"""
|
96 |
+
Extract the metric value from the models' model card
|
97 |
:param model_card_content: model card content
|
98 |
"""
|
99 |
accuracy_pattern = r"Accuracy: (\d+\.\d+)"
|
100 |
+
wer_pattern = r"Wer: (\d+\.\d+)"
|
101 |
+
|
102 |
+
if task == "audio-classification":
|
103 |
+
pattern = accuracy_pattern
|
104 |
+
elif task == "automatic-speech-recognition":
|
105 |
+
pattern = wer_pattern
|
106 |
+
|
107 |
+
match = re.search(pattern, model_card_content)
|
108 |
if match:
|
109 |
+
metric = match.group(1)
|
110 |
+
return float(metric)
|
111 |
else:
|
112 |
+
return None
|
113 |
|
114 |
|
115 |
+
def parse_metrics(model, task):
|
116 |
"""
|
117 |
Get model card and parse it
|
118 |
:param model_id: model id
|
119 |
"""
|
120 |
+
card = ModelCard.load(model)
|
121 |
+
return extract_metric(card.content, task)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
|
124 |
def certification(hf_username):
|
|
|
132 |
"passed_": False
|
133 |
},
|
134 |
{
|
135 |
+
"unit": "Unit 5: Automatic Speech Recognition",
|
136 |
+
"task": "automatic-speech-recognition",
|
137 |
+
"baseline_metric": 0.37,
|
138 |
"best_result": 0,
|
139 |
"best_model_id": "",
|
140 |
"passed_": False
|
|
|
159 |
|
160 |
for unit in results_certification:
|
161 |
unit["passed"] = pass_emoji(unit["passed_"])
|
162 |
+
|
163 |
+
match unit["task"]:
|
164 |
+
case "audio-classification":
|
165 |
+
try:
|
166 |
+
user_ac_models = get_user_models(hf_username, task = "audio-classification")
|
167 |
+
best_result, best_model_id = calculate_best_result(user_ac_models, task = "audio-classification")
|
168 |
+
unit["best_result"] = best_result
|
169 |
+
unit["best_model_id"] = best_model_id
|
170 |
+
if unit["best_result"] >= unit["baseline_metric"]:
|
171 |
+
unit["passed_"] = True
|
172 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
173 |
+
except: print("Either no relevant models found, or no metrics in the model card for audio classificaiton")
|
174 |
+
case "automatic-speech-recognition":
|
175 |
+
try:
|
176 |
+
user_asr_models = get_user_models(hf_username, task = "automatic-speech-recognition")
|
177 |
+
best_result, best_model_id = calculate_best_result(user_asr_models, task = "automatic-speech-recognition")
|
178 |
+
unit["best_result"] = best_result
|
179 |
+
unit["best_model_id"] = best_model_id
|
180 |
+
if unit["best_result"] <= unit["baseline_metric"]:
|
181 |
+
unit["passed_"] = True
|
182 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
183 |
+
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
184 |
+
case "TBD":
|
185 |
+
print("Evaluation for this unit is work in progress")
|
186 |
+
case _:
|
187 |
+
print("Unknown task")
|
188 |
|
189 |
print(results_certification)
|
190 |
|
|
|
192 |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
193 |
return df
|
194 |
|
|
|
195 |
with gr.Blocks() as demo:
|
196 |
gr.Markdown(f"""
|
197 |
# π Check your progress in the Audio Course π
|