MarcoParola's picture
brute force revert commit
63d85d1
raw
history blame contribute delete
13.6 kB
import gradio as gr
import yaml
import random
import os
import json
import time
from pathlib import Path
from huggingface_hub import CommitScheduler, HfApi
from src.utils import load_words, load_image_and_saliency, load_example_images, load_csv_concepts
from src.style import css
from src.user import UserID
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import json
from huggingface_hub import CommitScheduler
def main():
config = yaml.safe_load(open("config/config.yaml"))
words = ['grad-cam', 'lime', 'sidu', 'rise']
options = ['-', '1', '2', '3', '4']
class_names = config['dataset'][config['dataset']['name']]['class_names']
data_dir = os.path.join(config['dataset']['path'], config['dataset']['name'])
with gr.Blocks(theme=gr.themes.Glass(), css=css) as demo:
# Main App Components
title = gr.Markdown("# Saliency evaluation - experiment 1")
user_state = gr.State(0)
answers = gr.State([])
start_time = gr.State(time.time())
concepts = load_csv_concepts(data_dir)
gr.Markdown("### Image examples")
with gr.Row():
count = user_state if isinstance(user_state, int) else user_state.value
images = load_example_images(count, data_dir)
img1 = gr.Image(images[0])
img2 = gr.Image(images[1])
img3 = gr.Image(images[2])
img4 = gr.Image(images[3])
img5 = gr.Image(images[4])
img6 = gr.Image(images[5])
img7 = gr.Image(images[6])
img8 = gr.Image(images[7])
img9 = gr.Image(images[8])
img10 = gr.Image(images[9])
img11 = gr.Image(images[10])
img12 = gr.Image(images[11])
img13 = gr.Image(images[12])
img14 = gr.Image(images[13])
img15 = gr.Image(images[14])
img16 = gr.Image(images[15])
count = user_state if isinstance(user_state, int) else user_state.value
row = concepts.iloc[count]
question = gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=False)
with gr.Row():
target_img_label = gr.Markdown(f"Target image: **{class_names[user_state.value]}**")
gr.Markdown("Grad-cam")
gr.Markdown("Lime")
gr.Markdown("Sidu")
gr.Markdown("Rise")
with gr.Row():
count = user_state if isinstance(user_state, int) else user_state.value
images = load_image_and_saliency(count, data_dir)
target_img = gr.Image(images[0], elem_classes="main-image delay", visible=False)
saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=False)
saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=False)
saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=False)
saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=False)
with gr.Row():
dropdown1 = gr.Dropdown(choices=options, label="grad-cam", visible=False)
dropdown2 = gr.Dropdown(choices=options, label="lime", visible=False)
dropdown3 = gr.Dropdown(choices=options, label="sidu", visible=False)
dropdown4 = gr.Dropdown(choices=options, label="rise", visible=False)
continue_button = gr.Button("Continue")
submit_button = gr.Button("Submit", visible=False)
finish_button = gr.Button("Finish", visible=False)
def update_images(user_state):
count = user_state if isinstance(user_state, int) else user_state.value
if count < config['dataset'][config['dataset']['name']]['n_classes']:
images = load_image_and_saliency(count, data_dir)
# image examples
images = load_example_images(count, data_dir)
img1 = gr.Image(images[0], visible=True)
img2 = gr.Image(images[1], visible=True)
img3 = gr.Image(images[2], visible=True)
img4 = gr.Image(images[3], visible=True)
img5 = gr.Image(images[4], visible=True)
img6 = gr.Image(images[5], visible=True)
img7 = gr.Image(images[6], visible=True)
img8 = gr.Image(images[7], visible=True)
img9 = gr.Image(images[8], visible=True)
img10 = gr.Image(images[9], visible=True)
img11 = gr.Image(images[10], visible=True)
img12 = gr.Image(images[11], visible=True)
img13 = gr.Image(images[12], visible=True)
img14 = gr.Image(images[13], visible=True)
img15 = gr.Image(images[14], visible=True)
img16 = gr.Image(images[15], visible=True)
return img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16
else:
return img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16
def update_saliencies(dropdown1, dropdown2, dropdown3, dropdown4, user_state):
count = user_state if isinstance(user_state, int) else user_state.value
if count < config['dataset'][config['dataset']['name']]['n_classes']:
images = load_image_and_saliency(count, data_dir)
target_img = gr.Image(images[0], elem_classes="main-image", visible=True)
saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=True)
saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=True)
saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=True)
saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=True)
return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu
else:
return target_img, saliency_gradcam, saliency_lime, saliency_rise, saliency_sidu
def update_state(state):
count = state if isinstance(state, int) else state.value
return gr.State(count + 1)
def update_img_label(state):
count = state if isinstance(state, int) else state.value
return f" Target image: **{class_names[count]}**"
def update_buttons():
submit_button = gr.Button("Submit", visible=False)
continue_button = gr.Button("Continue", visible=True)
return continue_button, submit_button
def show_view(state):
count = state if isinstance(state, int) else state.value
max_images = config['dataset'][config['dataset']['name']]['n_classes']
finish_button = gr.Button("Finish", visible=(count == max_images-1))
submit_button = gr.Button("Submit", visible=(count != max_images-1))
continue_button = gr.Button("Continue", visible=False)
return continue_button, submit_button, finish_button
def hide_view():
target_img = gr.Image(images[0], elem_classes="main-image", visible=False)
saliency_gradcam = gr.Image(images[1], elem_classes="main-image", visible=False)
saliency_lime = gr.Image(images[2], elem_classes="main-image", visible=False)
saliency_sidu = gr.Image(images[4], elem_classes="main-image", visible=False)
saliency_rise = gr.Image(images[3], elem_classes="main-image", visible=False)
question = gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=False)
dropdown1 = gr.Dropdown(choices=options, label="grad-cam", visible=False)
dropdown2 = gr.Dropdown(choices=options, label="lime", visible=False)
dropdown3 = gr.Dropdown(choices=options, label="sidu", visible=False)
dropdown4 = gr.Dropdown(choices=options, label="rise", visible=False)
return question, target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, dropdown1, dropdown2, dropdown3, dropdown4
def update_dropdowns():
dp1 = gr.Dropdown(choices=options, value=options[0], label="grad-cam", visible=True)
dp2 = gr.Dropdown(choices=options, value=options[0], label="lime", visible=True)
dp3 = gr.Dropdown(choices=options, value=options[0], label="sidu", visible=True)
dp4 = gr.Dropdown(choices=options, value=options[0], label="rise", visible=True)
return dp1, dp2, dp3, dp4
def update_questions(state):
concepts = load_csv_concepts(data_dir)
count = state if isinstance(state, int) else state.value
row = concepts.iloc[count]
return gr.Markdown(f"### Sort the following saliency maps according to which of them better explains the class {class_names[count]}.", visible=True)
def redirect():
pass
def save_results(answers):
api_token = os.getenv("HUGGINGFACE_TOKEN")
if not api_token:
raise ValueError("Hugging Face API token not found. Please set the HF_API_TOKEN environment variable.")
json_file_results = config['results']['exp1_dir'] # 'exp1'
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
scheduler = CommitScheduler(
repo_id=f"results_{config['dataset']['name']}_{config['results']['exp1_dir']}", # The repo id
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data",
token=api_token # Pass the token here
)
duration = time.time() - start_time.value
info_to_push = {
"user_id": time.time(),
"answer": {i: answer for i, answer in enumerate(answers)},
"duration": duration
}
# Save the results into huggingface hub
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump({
"user_id": info_to_push["user_id"],
"answers": info_to_push["answer"],
"duration": info_to_push["duration"],
"datetime": datetime.now().isoformat()
}, f)
f.write("\n")
scheduler.push_to_hub()
def check_answer(dropdown1, dropdown2, dropdown3, dropdown4):
if '-' in [dropdown1, dropdown2, dropdown3, dropdown4]:
raise gr.Error('Please select a value for each saliency method')
# check if all values are different 1,2,3,4
if len(set([dropdown1, dropdown2, dropdown3, dropdown4])) < 4:
print(set([dropdown1, dropdown2, dropdown3, dropdown4]))
raise gr.Error('Please select different values for each saliency method')
def add_answer(dropdown1,dropdown2,dropdown3,dropdown4, answers):
rank = [dropdown1,dropdown2,dropdown3,dropdown4]
answers.append(rank)
return answers
submit_button.click(
check_answer,
inputs=[dropdown1, dropdown2, dropdown3, dropdown4]
).success(
update_state,
inputs=user_state,
outputs=user_state
).then(
add_answer,
inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],
outputs=answers
).then(
update_img_label,
inputs=user_state,
outputs=target_img_label
).then(
update_images,
inputs=user_state,
outputs=[img1, img2, img3, img4, img5, img6, img7, img8, img9, img10, img11, img12, img13, img14, img15, img16]
).then(
update_buttons,
outputs={continue_button, submit_button}
).then(
hide_view,
outputs={question, target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise, dropdown1, dropdown2, dropdown3, dropdown4}
)
continue_button.click(
show_view,
inputs=user_state,
outputs={continue_button, submit_button, finish_button}
).then(
update_img_label,
inputs=user_state,
outputs=target_img_label
).then(
update_saliencies,
inputs=[dropdown1, dropdown2, dropdown3, dropdown4, user_state],
outputs={target_img, saliency_gradcam, saliency_lime, saliency_sidu, saliency_rise},
).then(
update_questions,
inputs=user_state,
outputs=question
).then(
update_dropdowns,
outputs={dropdown1, dropdown2, dropdown3, dropdown4}
)
finish_button.click(
add_answer, inputs=[dropdown1, dropdown2, dropdown3, dropdown4, answers],outputs=answers
).then(
save_results, inputs=answers
).then(
redirect, js="window.location = 'https://marcoparola.github.io/saliency-evaluation-app/end'")
demo.load()
demo.launch()
if __name__ == "__main__":
main()