File size: 538 Bytes
9a2d345
8e54fd5
 
 
772bcf5
 
8e54fd5
 
772bcf5
8e54fd5
fc84913
8e54fd5
ebf3181
8e54fd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import gradio as gr
from transformers import pipeline
import torch

qa = pipeline("question-answering", model="MarcBrun/ixambert-finetuned-squad")

def answer_question(question, answer_text):

  answer = qa(question=question, context=answer_text)
  
  return answer["answer"]

iface = gr.Interface(fn=answer_question, inputs=[gr.inputs.Textbox(lines=1, placeholder="Question Here...", label="Question"),gr.inputs.Textbox(lines=5, placeholder="Context Here...", label="Context")], outputs=gr.outputs.Textbox(label="Answer"))
iface.launch()