Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,27 +3,22 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
|
3 |
import graphviz
|
4 |
from PIL import Image
|
5 |
|
6 |
-
# تحميل موديل التلخيص
|
7 |
model_name = "csebuetnlp/mT5_multilingual_XLSum"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
|
11 |
-
# تحميل موديل توليد الأسئلة
|
12 |
question_generator = pipeline("text2text-generation", model="valhalla/t5-small-e2e-qg")
|
13 |
|
14 |
-
# دالة تلخيص النص
|
15 |
def summarize_text(text, src_lang):
|
16 |
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
17 |
summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
18 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
19 |
return summary
|
20 |
|
21 |
-
# دالة توليد الأسئلة
|
22 |
def generate_questions(summary):
|
23 |
questions = question_generator(summary, max_length=64, num_return_sequences=5)
|
24 |
return [q['generated_text'] for q in questions]
|
25 |
|
26 |
-
# دالة توليد خريطة مفاهيم
|
27 |
def generate_concept_map(summary, questions):
|
28 |
dot = graphviz.Digraph(comment='Concept Map')
|
29 |
dot.node('A', summary)
|
@@ -33,20 +28,18 @@ def generate_concept_map(summary, questions):
|
|
33 |
dot.render('concept_map', format='png')
|
34 |
return Image.open('concept_map.png')
|
35 |
|
36 |
-
# دالة التحليل الكامل
|
37 |
def analyze_text(text, lang):
|
38 |
summary = summarize_text(text, lang)
|
39 |
questions = generate_questions(summary)
|
40 |
concept_map_image = generate_concept_map(summary, questions)
|
41 |
return summary, questions, concept_map_image
|
42 |
|
43 |
-
# أمثلة للنصوص
|
44 |
examples = [
|
45 |
["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر يهدف إلى إنشاء آلات ذكية تعمل وتتفاعل مثل البشر. بعض الأنشطة التي صممت أجهزة الكمبيوتر الذكية للقيام بها تشمل: التعرف على الصوت، التعلم، التخطيط، وحل المشاكل.", "ar"],
|
46 |
["Artificial intelligence is a branch of computer science that aims to create intelligent machines that work and react like humans. Some of the activities computers with artificial intelligence are designed for include: Speech recognition, learning, planning, and problem-solving.", "en"]
|
47 |
]
|
48 |
|
49 |
-
|
50 |
iface = gr.Interface(
|
51 |
fn=analyze_text,
|
52 |
inputs=[gr.Textbox(lines=10, placeholder="Enter text here........"), gr.Dropdown(["ar", "en"], label="Language")],
|
@@ -56,6 +49,5 @@ iface = gr.Interface(
|
|
56 |
description="Enter a text in Arabic or English and the model will summarize it and generate various questions about it in addition to generating a concept map, or you can choose one of the examples."
|
57 |
)
|
58 |
|
59 |
-
# تشغيل التطبيق
|
60 |
if __name__ == "__main__":
|
61 |
iface.launch()
|
|
|
3 |
import graphviz
|
4 |
from PIL import Image
|
5 |
|
|
|
6 |
model_name = "csebuetnlp/mT5_multilingual_XLSum"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
|
|
|
10 |
question_generator = pipeline("text2text-generation", model="valhalla/t5-small-e2e-qg")
|
11 |
|
|
|
12 |
def summarize_text(text, src_lang):
|
13 |
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
14 |
summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
15 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
16 |
return summary
|
17 |
|
|
|
18 |
def generate_questions(summary):
|
19 |
questions = question_generator(summary, max_length=64, num_return_sequences=5)
|
20 |
return [q['generated_text'] for q in questions]
|
21 |
|
|
|
22 |
def generate_concept_map(summary, questions):
|
23 |
dot = graphviz.Digraph(comment='Concept Map')
|
24 |
dot.node('A', summary)
|
|
|
28 |
dot.render('concept_map', format='png')
|
29 |
return Image.open('concept_map.png')
|
30 |
|
|
|
31 |
def analyze_text(text, lang):
|
32 |
summary = summarize_text(text, lang)
|
33 |
questions = generate_questions(summary)
|
34 |
concept_map_image = generate_concept_map(summary, questions)
|
35 |
return summary, questions, concept_map_image
|
36 |
|
|
|
37 |
examples = [
|
38 |
["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر يهدف إلى إنشاء آلات ذكية تعمل وتتفاعل مثل البشر. بعض الأنشطة التي صممت أجهزة الكمبيوتر الذكية للقيام بها تشمل: التعرف على الصوت، التعلم، التخطيط، وحل المشاكل.", "ar"],
|
39 |
["Artificial intelligence is a branch of computer science that aims to create intelligent machines that work and react like humans. Some of the activities computers with artificial intelligence are designed for include: Speech recognition, learning, planning, and problem-solving.", "en"]
|
40 |
]
|
41 |
|
42 |
+
|
43 |
iface = gr.Interface(
|
44 |
fn=analyze_text,
|
45 |
inputs=[gr.Textbox(lines=10, placeholder="Enter text here........"), gr.Dropdown(["ar", "en"], label="Language")],
|
|
|
49 |
description="Enter a text in Arabic or English and the model will summarize it and generate various questions about it in addition to generating a concept map, or you can choose one of the examples."
|
50 |
)
|
51 |
|
|
|
52 |
if __name__ == "__main__":
|
53 |
iface.launch()
|