Fabrice-TIERCELIN
commited on
Handle any size
Browse filesThis PR handles and restores any original sizes, even greater than 1 million of pixels:
1. It saves the original size
2. It computes the best size for SDXL, even if it's landscape or portrait
3. It handles that the size must be multiple of 8
4. After the computation, it restores the orignal size
This code is already used here: https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop
app.py
CHANGED
@@ -11,22 +11,40 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
11 |
pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
|
12 |
pipe = pipe.to(device)
|
13 |
|
14 |
-
def resize(value,img):
|
15 |
-
img = Image.open(img)
|
16 |
-
img = img.resize((value,value))
|
17 |
-
return img
|
18 |
-
|
19 |
def infer(source_img, prompt, steps, seed, Strength):
|
20 |
generator = torch.Generator(device).manual_seed(seed)
|
21 |
if int(steps * Strength) < 1:
|
22 |
steps = math.ceil(1 / max(0.10, Strength))
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
gr.Interface(fn=infer, inputs=[
|
29 |
-
gr.Image(sources=["upload", "webcam", "clipboard"], type="
|
30 |
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
31 |
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
|
32 |
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|
|
|
11 |
pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
|
12 |
pipe = pipe.to(device)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
def infer(source_img, prompt, steps, seed, Strength):
|
15 |
generator = torch.Generator(device).manual_seed(seed)
|
16 |
if int(steps * Strength) < 1:
|
17 |
steps = math.ceil(1 / max(0.10, Strength))
|
18 |
+
|
19 |
+
original_height, original_width, original_channel = np.array(source_img).shape
|
20 |
+
|
21 |
+
# Limited to 1 million pixels
|
22 |
+
if 1024 * 1024 < original_width * original_height:
|
23 |
+
factor = ((1024 * 1024) / (original_width * original_height))**0.5
|
24 |
+
process_width = math.floor(original_width * factor)
|
25 |
+
process_height = math.floor(original_height * factor)
|
26 |
+
else:
|
27 |
+
process_width = original_width
|
28 |
+
process_height = original_height
|
29 |
+
|
30 |
+
# Width and height must be multiple of 8
|
31 |
+
if (process_width % 8) != 0 or (process_height % 8) != 0:
|
32 |
+
process_width = process_width - (process_width % 8)
|
33 |
+
process_height = process_height - (process_height % 8)
|
34 |
+
|
35 |
+
if ((process_width + 8) * (process_height + 8)) <= (1024 * 1024):
|
36 |
+
process_width = process_width + 8
|
37 |
+
process_height = process_height + 8
|
38 |
+
|
39 |
+
source_image = source_img.resize((process_width, process_height))
|
40 |
+
|
41 |
+
image = pipe(prompt, image=source_image, strength=Strength, guidance_scale=0.0, num_inference_steps=steps, width = process_width, height = process_height).images[0]
|
42 |
+
|
43 |
+
output_image = image.resize((original_width, original_height))
|
44 |
+
return output_image
|
45 |
|
46 |
gr.Interface(fn=infer, inputs=[
|
47 |
+
gr.Image(sources=["upload", "webcam", "clipboard"], type = "pil", label="Raw Image."),
|
48 |
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
49 |
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
|
50 |
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|