File size: 3,379 Bytes
3e1dcd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be4f38b
3e1dcd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from transformers import BitsAndBytesConfig, LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
import torch
import numpy as np
import av
import spaces
import gradio as gr
import os

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

model_name = 'llava-hf/LLaVA-NeXT-Video-7B-DPO-hf' 

processor = LlavaNextVideoProcessor.from_pretrained(model_name)
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
    model_name,
    quantization_config=quantization_config,
    device_map='auto'
)

@spaces.GPU
def read_video_pyav(container, indices):
    '''
    Decode the video with PyAV decoder.
    Args:
        container (av.container.input.InputContainer): PyAV container.
        indices (List[int]): List of frame indices to decode.
    Returns:
        np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3).
    '''
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])

@spaces.GPU
def process_video(video_file, question):
    # Open video and sample frames
    with av.open(video_file.name) as container: # Access file name from Gradio input
        total_frames = container.streams.video[0].frames
        indices = np.arange(0, total_frames, total_frames / 8).astype(int)
        video_clip = read_video_pyav(container, indices)

    # Prepare conversation
    conversation = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": f"{question}"},
                {"type": "video"},
            ],
        },
    ]
    prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
    # Prepare inputs for the model
    input = processor([prompt], videos=[video_clip], padding=True, return_tensors="pt").to(model.device)

    # Generate output
    generate_kwargs = {"max_new_tokens": 500, "do_sample": False, "top_p": 0.9}
    output = model.generate(**input, **generate_kwargs)
    generated_text = processor.batch_decode(output, skip_special_tokens=True)[0]
    
    return generated_text.split("ASSISTANT: ", 1)[-1].strip()

@spaces.GPU
def process_videos(video_files, question):
    """Processes multiple videos and answers a single question for each."""
    answers = []
    for video_file in video_files:
        video_name = os.path.basename(video_file.name)
        answer = process_video(video_file, question)
        answers.append(f"**Video: {video_name}**\n{answer}\n")
    return "\n---\n".join(answers)

# Define Gradio interface for multiple videos
def gradio_interface(videos, question):
    answers = process_videos(videos, question)
    return answers

iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.File(label="Upload Videos", file_count="multiple"),
        gr.Textbox(label="Enter Your Question")
    ],
    outputs=gr.Textbox(label="Generated Answers"),
    title="Video Question Answering",
    description="Upload multiple videos and ask a single question to receive answers tailored to each video."
)

if __name__ == "__main__":
    iface.launch(debug=True)