Spaces:
Sleeping
Sleeping
Manikanta-7013
commited on
Commit
•
f3a430d
1
Parent(s):
7bdccb5
Upload 819 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- CNN/.ipynb_checkpoints/Image Recognition Model With CNN-checkpoint.ipynb +656 -0
- CNN/Image Recognition Model With CNN.ipynb +647 -0
- CNN/dataset/.DS_Store +0 -0
- CNN/dataset/__MACOSX/._dataset +0 -0
- CNN/dataset/__MACOSX/dataset/._.DS_Store +0 -0
- CNN/dataset/__MACOSX/dataset/._test_set +0 -0
- CNN/dataset/__MACOSX/dataset/._training_set +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/._.DS_Store +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/._cats +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/._dogs +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._.DS_Store +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4001.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4002.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4003.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4004.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4005.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4006.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4007.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4008.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4009.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4010.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4011.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4012.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4013.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4014.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4015.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4016.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4017.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4018.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4019.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4020.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4021.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4022.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4023.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4024.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4025.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4026.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4027.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4028.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4029.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4030.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4031.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4032.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4033.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4034.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4035.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4036.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4037.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4038.jpg +0 -0
- CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4039.jpg +0 -0
CNN/.ipynb_checkpoints/Image Recognition Model With CNN-checkpoint.ipynb
ADDED
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "3DR-eO17geWu"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Convolutional Neural Network"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {
|
15 |
+
"id": "EMefrVPCg-60"
|
16 |
+
},
|
17 |
+
"source": [
|
18 |
+
"### Importing the libraries"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 1,
|
24 |
+
"metadata": {
|
25 |
+
"id": "w3mybNcNuyRf"
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"name": "stdout",
|
30 |
+
"output_type": "stream",
|
31 |
+
"text": [
|
32 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
|
33 |
+
"\n"
|
34 |
+
]
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"source": [
|
38 |
+
"import tensorflow as tf\n",
|
39 |
+
"from keras.preprocessing.image import ImageDataGenerator"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": 2,
|
45 |
+
"metadata": {
|
46 |
+
"colab": {
|
47 |
+
"base_uri": "https://localhost:8080/",
|
48 |
+
"height": 38
|
49 |
+
},
|
50 |
+
"id": "Gk81TsV3vNYv",
|
51 |
+
"outputId": "ac51f686-a76e-4be8-ae56-5db116913a8b"
|
52 |
+
},
|
53 |
+
"outputs": [
|
54 |
+
{
|
55 |
+
"data": {
|
56 |
+
"text/plain": [
|
57 |
+
"'2.15.0'"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
"execution_count": 2,
|
61 |
+
"metadata": {},
|
62 |
+
"output_type": "execute_result"
|
63 |
+
}
|
64 |
+
],
|
65 |
+
"source": [
|
66 |
+
"tf.__version__"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "markdown",
|
71 |
+
"metadata": {
|
72 |
+
"id": "oxQxCBWyoGPE"
|
73 |
+
},
|
74 |
+
"source": [
|
75 |
+
"## Part 1 - Data Preprocessing"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "markdown",
|
80 |
+
"metadata": {
|
81 |
+
"id": "MvE-heJNo3GG"
|
82 |
+
},
|
83 |
+
"source": [
|
84 |
+
"### Preprocessing the Training set"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 3,
|
90 |
+
"metadata": {
|
91 |
+
"id": "IZPgIbSyzcZz"
|
92 |
+
},
|
93 |
+
"outputs": [
|
94 |
+
{
|
95 |
+
"name": "stdout",
|
96 |
+
"output_type": "stream",
|
97 |
+
"text": [
|
98 |
+
"Found 8000 images belonging to 2 classes.\n"
|
99 |
+
]
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"source": [
|
103 |
+
"train_datagen = ImageDataGenerator(rescale = 1./255,\n",
|
104 |
+
" shear_range = 0.2,\n",
|
105 |
+
" zoom_range = 0.2,\n",
|
106 |
+
" horizontal_flip = True)\n",
|
107 |
+
"training_set = train_datagen.flow_from_directory('dataset/training_set',\n",
|
108 |
+
" target_size = (64, 64),\n",
|
109 |
+
" batch_size = 32,\n",
|
110 |
+
" class_mode = 'binary')"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "markdown",
|
115 |
+
"metadata": {
|
116 |
+
"id": "mrCMmGw9pHys"
|
117 |
+
},
|
118 |
+
"source": [
|
119 |
+
"### Preprocessing the Test set"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": 4,
|
125 |
+
"metadata": {
|
126 |
+
"id": "qTwLxo10zn-P"
|
127 |
+
},
|
128 |
+
"outputs": [
|
129 |
+
{
|
130 |
+
"name": "stdout",
|
131 |
+
"output_type": "stream",
|
132 |
+
"text": [
|
133 |
+
"Found 2000 images belonging to 2 classes.\n"
|
134 |
+
]
|
135 |
+
}
|
136 |
+
],
|
137 |
+
"source": [
|
138 |
+
"test_datagen = ImageDataGenerator(rescale = 1./255)\n",
|
139 |
+
"test_set = test_datagen.flow_from_directory('dataset/test_set',\n",
|
140 |
+
" target_size = (64, 64),\n",
|
141 |
+
" batch_size = 32,\n",
|
142 |
+
" class_mode = 'binary')"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "markdown",
|
147 |
+
"metadata": {
|
148 |
+
"id": "af8O4l90gk7B"
|
149 |
+
},
|
150 |
+
"source": [
|
151 |
+
"## Part 2 - Building the CNN"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "markdown",
|
156 |
+
"metadata": {
|
157 |
+
"id": "ces1gXY2lmoX"
|
158 |
+
},
|
159 |
+
"source": [
|
160 |
+
"### Initialising the CNN"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "code",
|
165 |
+
"execution_count": 5,
|
166 |
+
"metadata": {
|
167 |
+
"id": "OywsP_gTz8VA"
|
168 |
+
},
|
169 |
+
"outputs": [
|
170 |
+
{
|
171 |
+
"name": "stdout",
|
172 |
+
"output_type": "stream",
|
173 |
+
"text": [
|
174 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\backend.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.\n",
|
175 |
+
"\n"
|
176 |
+
]
|
177 |
+
}
|
178 |
+
],
|
179 |
+
"source": [
|
180 |
+
"cnn=tf.keras.models.Sequential()"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "markdown",
|
185 |
+
"metadata": {
|
186 |
+
"id": "u5YJj_XMl5LF"
|
187 |
+
},
|
188 |
+
"source": [
|
189 |
+
"### Step 1 - Convolution"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 6,
|
195 |
+
"metadata": {
|
196 |
+
"id": "dkA5f15L0IRA"
|
197 |
+
},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"cnn.add(tf.keras.layers.Conv2D(filters=32,kernel_size=3,activation='relu',input_shape=[64,64,3]))"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "markdown",
|
205 |
+
"metadata": {
|
206 |
+
"id": "tf87FpvxmNOJ"
|
207 |
+
},
|
208 |
+
"source": [
|
209 |
+
"### Step 2 - Pooling"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "code",
|
214 |
+
"execution_count": 7,
|
215 |
+
"metadata": {
|
216 |
+
"id": "Khzh28Gj056f"
|
217 |
+
},
|
218 |
+
"outputs": [
|
219 |
+
{
|
220 |
+
"name": "stdout",
|
221 |
+
"output_type": "stream",
|
222 |
+
"text": [
|
223 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\pooling\\max_pooling2d.py:161: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.\n",
|
224 |
+
"\n"
|
225 |
+
]
|
226 |
+
}
|
227 |
+
],
|
228 |
+
"source": [
|
229 |
+
"cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "markdown",
|
234 |
+
"metadata": {
|
235 |
+
"id": "xaTOgD8rm4mU"
|
236 |
+
},
|
237 |
+
"source": [
|
238 |
+
"### Adding a second convolutional layer"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": 8,
|
244 |
+
"metadata": {
|
245 |
+
"id": "G7GvlV8W1zFv"
|
246 |
+
},
|
247 |
+
"outputs": [],
|
248 |
+
"source": [
|
249 |
+
"cnn.add(tf.keras.layers.Conv2D(filters=32,kernel_size=3,activation='relu'))\n",
|
250 |
+
"cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "markdown",
|
255 |
+
"metadata": {
|
256 |
+
"id": "tmiEuvTunKfk"
|
257 |
+
},
|
258 |
+
"source": [
|
259 |
+
"### Step 3 - Flattening"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": 9,
|
265 |
+
"metadata": {
|
266 |
+
"id": "CgmlA6xs16ub"
|
267 |
+
},
|
268 |
+
"outputs": [],
|
269 |
+
"source": [
|
270 |
+
"cnn.add(tf.keras.layers.Flatten())"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "markdown",
|
275 |
+
"metadata": {
|
276 |
+
"id": "dAoSECOm203v"
|
277 |
+
},
|
278 |
+
"source": [
|
279 |
+
"### Step 4 - Full Connection"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": 10,
|
285 |
+
"metadata": {
|
286 |
+
"id": "1DXEM0C-2Cv6"
|
287 |
+
},
|
288 |
+
"outputs": [],
|
289 |
+
"source": [
|
290 |
+
"cnn.add(tf.keras.layers.Dense(units=128,activation='relu'))"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"cell_type": "markdown",
|
295 |
+
"metadata": {
|
296 |
+
"id": "yTldFvbX28Na"
|
297 |
+
},
|
298 |
+
"source": [
|
299 |
+
"### Step 5 - Output Layer"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": 11,
|
305 |
+
"metadata": {
|
306 |
+
"id": "bM9tOMr02dTk"
|
307 |
+
},
|
308 |
+
"outputs": [],
|
309 |
+
"source": [
|
310 |
+
"cnn.add(tf.keras.layers.Dense(units=1,activation='sigmoid'))"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "markdown",
|
315 |
+
"metadata": {
|
316 |
+
"id": "D6XkI90snSDl"
|
317 |
+
},
|
318 |
+
"source": [
|
319 |
+
"## Part 3 - Training the CNN"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "markdown",
|
324 |
+
"metadata": {
|
325 |
+
"id": "vfrFQACEnc6i"
|
326 |
+
},
|
327 |
+
"source": [
|
328 |
+
"### Compiling the CNN"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": 12,
|
334 |
+
"metadata": {
|
335 |
+
"id": "QRSs7B252tM8"
|
336 |
+
},
|
337 |
+
"outputs": [
|
338 |
+
{
|
339 |
+
"name": "stdout",
|
340 |
+
"output_type": "stream",
|
341 |
+
"text": [
|
342 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\optimizers\\__init__.py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.\n",
|
343 |
+
"\n"
|
344 |
+
]
|
345 |
+
}
|
346 |
+
],
|
347 |
+
"source": [
|
348 |
+
"cnn.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "markdown",
|
353 |
+
"metadata": {
|
354 |
+
"id": "ehS-v3MIpX2h"
|
355 |
+
},
|
356 |
+
"source": [
|
357 |
+
"### Training the CNN on the Training set and evaluating it on the Test set"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"cell_type": "code",
|
362 |
+
"execution_count": 13,
|
363 |
+
"metadata": {
|
364 |
+
"id": "ibgjSnzf3Mai"
|
365 |
+
},
|
366 |
+
"outputs": [
|
367 |
+
{
|
368 |
+
"name": "stdout",
|
369 |
+
"output_type": "stream",
|
370 |
+
"text": [
|
371 |
+
"Epoch 1/25\n",
|
372 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\utils\\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead.\n",
|
373 |
+
"\n",
|
374 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\engine\\base_layer_utils.py:384: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead.\n",
|
375 |
+
"\n",
|
376 |
+
"250/250 [==============================] - 75s 298ms/step - loss: 0.6505 - accuracy: 0.6121 - val_loss: 0.5777 - val_accuracy: 0.7080\n",
|
377 |
+
"Epoch 2/25\n",
|
378 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.5849 - accuracy: 0.6865 - val_loss: 0.5398 - val_accuracy: 0.7290\n",
|
379 |
+
"Epoch 3/25\n",
|
380 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.5501 - accuracy: 0.7189 - val_loss: 0.5827 - val_accuracy: 0.6865\n",
|
381 |
+
"Epoch 4/25\n",
|
382 |
+
"250/250 [==============================] - 30s 122ms/step - loss: 0.5212 - accuracy: 0.7369 - val_loss: 0.5147 - val_accuracy: 0.7455\n",
|
383 |
+
"Epoch 5/25\n",
|
384 |
+
"250/250 [==============================] - 30s 119ms/step - loss: 0.4896 - accuracy: 0.7613 - val_loss: 0.5152 - val_accuracy: 0.7550\n",
|
385 |
+
"Epoch 6/25\n",
|
386 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.4721 - accuracy: 0.7770 - val_loss: 0.4776 - val_accuracy: 0.7640\n",
|
387 |
+
"Epoch 7/25\n",
|
388 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.4506 - accuracy: 0.7826 - val_loss: 0.4668 - val_accuracy: 0.7845\n",
|
389 |
+
"Epoch 8/25\n",
|
390 |
+
"250/250 [==============================] - 32s 126ms/step - loss: 0.4380 - accuracy: 0.7868 - val_loss: 0.4637 - val_accuracy: 0.7870\n",
|
391 |
+
"Epoch 9/25\n",
|
392 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.4231 - accuracy: 0.8026 - val_loss: 0.4680 - val_accuracy: 0.7850\n",
|
393 |
+
"Epoch 10/25\n",
|
394 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.4048 - accuracy: 0.8135 - val_loss: 0.5443 - val_accuracy: 0.7470\n",
|
395 |
+
"Epoch 11/25\n",
|
396 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.3917 - accuracy: 0.8242 - val_loss: 0.4698 - val_accuracy: 0.7875\n",
|
397 |
+
"Epoch 12/25\n",
|
398 |
+
"250/250 [==============================] - 37s 148ms/step - loss: 0.3743 - accuracy: 0.8284 - val_loss: 0.4812 - val_accuracy: 0.7940\n",
|
399 |
+
"Epoch 13/25\n",
|
400 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.3720 - accuracy: 0.8317 - val_loss: 0.4309 - val_accuracy: 0.8140\n",
|
401 |
+
"Epoch 14/25\n",
|
402 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.3497 - accuracy: 0.8443 - val_loss: 0.4593 - val_accuracy: 0.7980\n",
|
403 |
+
"Epoch 15/25\n",
|
404 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.3407 - accuracy: 0.8514 - val_loss: 0.4699 - val_accuracy: 0.7925\n",
|
405 |
+
"Epoch 16/25\n",
|
406 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.3249 - accuracy: 0.8593 - val_loss: 0.4712 - val_accuracy: 0.8035\n",
|
407 |
+
"Epoch 17/25\n",
|
408 |
+
"250/250 [==============================] - 30s 122ms/step - loss: 0.3044 - accuracy: 0.8748 - val_loss: 0.4846 - val_accuracy: 0.8060\n",
|
409 |
+
"Epoch 18/25\n",
|
410 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.3082 - accuracy: 0.8608 - val_loss: 0.4750 - val_accuracy: 0.8040\n",
|
411 |
+
"Epoch 19/25\n",
|
412 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.2860 - accuracy: 0.8752 - val_loss: 0.4533 - val_accuracy: 0.8180\n",
|
413 |
+
"Epoch 20/25\n",
|
414 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.2761 - accuracy: 0.8792 - val_loss: 0.5786 - val_accuracy: 0.7975\n",
|
415 |
+
"Epoch 21/25\n",
|
416 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.2634 - accuracy: 0.8861 - val_loss: 0.4989 - val_accuracy: 0.8085\n",
|
417 |
+
"Epoch 22/25\n",
|
418 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.2491 - accuracy: 0.8946 - val_loss: 0.5098 - val_accuracy: 0.8160\n",
|
419 |
+
"Epoch 23/25\n",
|
420 |
+
"250/250 [==============================] - 31s 124ms/step - loss: 0.2385 - accuracy: 0.8981 - val_loss: 0.5296 - val_accuracy: 0.8115\n",
|
421 |
+
"Epoch 24/25\n",
|
422 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.2260 - accuracy: 0.9040 - val_loss: 0.5117 - val_accuracy: 0.8105\n",
|
423 |
+
"Epoch 25/25\n",
|
424 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.2117 - accuracy: 0.9146 - val_loss: 0.5145 - val_accuracy: 0.8180\n"
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"data": {
|
429 |
+
"text/plain": [
|
430 |
+
"<keras.src.callbacks.History at 0x1f3d5467610>"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
"execution_count": 13,
|
434 |
+
"metadata": {},
|
435 |
+
"output_type": "execute_result"
|
436 |
+
}
|
437 |
+
],
|
438 |
+
"source": [
|
439 |
+
"cnn.fit(x=training_set,validation_data=test_set,epochs=25)"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"cell_type": "markdown",
|
444 |
+
"metadata": {
|
445 |
+
"id": "U3PZasO0006Z"
|
446 |
+
},
|
447 |
+
"source": [
|
448 |
+
"## Part 4 - Making a single prediction"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"cell_type": "code",
|
453 |
+
"execution_count": 14,
|
454 |
+
"metadata": {
|
455 |
+
"id": "PQGfPACq3mGS"
|
456 |
+
},
|
457 |
+
"outputs": [
|
458 |
+
{
|
459 |
+
"name": "stdout",
|
460 |
+
"output_type": "stream",
|
461 |
+
"text": [
|
462 |
+
"1/1 [==============================] - 0s 107ms/step\n"
|
463 |
+
]
|
464 |
+
}
|
465 |
+
],
|
466 |
+
"source": [
|
467 |
+
"import numpy as np\n",
|
468 |
+
"from keras.preprocessing import image\n",
|
469 |
+
"test_image=image.load_img('dataset/single_prediction/cat_or_dog_1.jpg',target_size=(64,64))\n",
|
470 |
+
"test_image=image.img_to_array(test_image)\n",
|
471 |
+
"test_image=np.expand_dims(test_image,axis=0)\n",
|
472 |
+
"result=cnn.predict(test_image)\n",
|
473 |
+
"training_set.class_indices\n",
|
474 |
+
"if result[0][0]==1:\n",
|
475 |
+
" prediction='dog'\n",
|
476 |
+
"else:\n",
|
477 |
+
" prediction='cat'"
|
478 |
+
]
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"cell_type": "code",
|
482 |
+
"execution_count": 15,
|
483 |
+
"metadata": {
|
484 |
+
"id": "xMvlNcFN5yEX"
|
485 |
+
},
|
486 |
+
"outputs": [
|
487 |
+
{
|
488 |
+
"name": "stdout",
|
489 |
+
"output_type": "stream",
|
490 |
+
"text": [
|
491 |
+
"dog\n"
|
492 |
+
]
|
493 |
+
}
|
494 |
+
],
|
495 |
+
"source": [
|
496 |
+
"print(prediction)"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"cell_type": "code",
|
501 |
+
"execution_count": 16,
|
502 |
+
"metadata": {},
|
503 |
+
"outputs": [
|
504 |
+
{
|
505 |
+
"name": "stdout",
|
506 |
+
"output_type": "stream",
|
507 |
+
"text": [
|
508 |
+
"1/1 [==============================] - 0s 25ms/step\n"
|
509 |
+
]
|
510 |
+
}
|
511 |
+
],
|
512 |
+
"source": [
|
513 |
+
"import numpy as np\n",
|
514 |
+
"from keras.preprocessing import image\n",
|
515 |
+
"test_image=image.load_img('dataset/single_prediction/cat_or_dog_2.jpg',target_size=(64,64))\n",
|
516 |
+
"test_image=image.img_to_array(test_image)\n",
|
517 |
+
"test_image=np.expand_dims(test_image,axis=0)\n",
|
518 |
+
"result=cnn.predict(test_image)\n",
|
519 |
+
"training_set.class_indices\n",
|
520 |
+
"if result[0][0]==1:\n",
|
521 |
+
" prediction='dog'\n",
|
522 |
+
"else:\n",
|
523 |
+
" prediction='cat'"
|
524 |
+
]
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"cell_type": "code",
|
528 |
+
"execution_count": 17,
|
529 |
+
"metadata": {},
|
530 |
+
"outputs": [
|
531 |
+
{
|
532 |
+
"name": "stdout",
|
533 |
+
"output_type": "stream",
|
534 |
+
"text": [
|
535 |
+
"cat\n"
|
536 |
+
]
|
537 |
+
}
|
538 |
+
],
|
539 |
+
"source": [
|
540 |
+
"print(prediction)"
|
541 |
+
]
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"cell_type": "code",
|
545 |
+
"execution_count": 18,
|
546 |
+
"metadata": {},
|
547 |
+
"outputs": [
|
548 |
+
{
|
549 |
+
"name": "stdout",
|
550 |
+
"output_type": "stream",
|
551 |
+
"text": [
|
552 |
+
"1/1 [==============================] - 0s 26ms/step\n"
|
553 |
+
]
|
554 |
+
}
|
555 |
+
],
|
556 |
+
"source": [
|
557 |
+
"import numpy as np\n",
|
558 |
+
"from keras.preprocessing import image\n",
|
559 |
+
"test_image=image.load_img('dataset/single_prediction/cat_or_dog_3.jpg',target_size=(64,64))\n",
|
560 |
+
"test_image=image.img_to_array(test_image)\n",
|
561 |
+
"test_image=np.expand_dims(test_image,axis=0)\n",
|
562 |
+
"result=cnn.predict(test_image)\n",
|
563 |
+
"training_set.class_indices\n",
|
564 |
+
"if result[0][0]==1:\n",
|
565 |
+
" prediction='dog'\n",
|
566 |
+
"else:\n",
|
567 |
+
" prediction='cat'"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"cell_type": "code",
|
572 |
+
"execution_count": 19,
|
573 |
+
"metadata": {},
|
574 |
+
"outputs": [
|
575 |
+
{
|
576 |
+
"name": "stdout",
|
577 |
+
"output_type": "stream",
|
578 |
+
"text": [
|
579 |
+
"cat\n"
|
580 |
+
]
|
581 |
+
}
|
582 |
+
],
|
583 |
+
"source": [
|
584 |
+
"print(prediction)"
|
585 |
+
]
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"cell_type": "code",
|
589 |
+
"execution_count": 20,
|
590 |
+
"metadata": {},
|
591 |
+
"outputs": [
|
592 |
+
{
|
593 |
+
"name": "stdout",
|
594 |
+
"output_type": "stream",
|
595 |
+
"text": [
|
596 |
+
"1/1 [==============================] - 0s 25ms/step\n"
|
597 |
+
]
|
598 |
+
}
|
599 |
+
],
|
600 |
+
"source": [
|
601 |
+
"import numpy as np\n",
|
602 |
+
"from keras.preprocessing import image\n",
|
603 |
+
"test_image=image.load_img('dataset/single_prediction/cat_or_dog_4.jpg',target_size=(64,64))\n",
|
604 |
+
"test_image=image.img_to_array(test_image)\n",
|
605 |
+
"test_image=np.expand_dims(test_image,axis=0)\n",
|
606 |
+
"result=cnn.predict(test_image)\n",
|
607 |
+
"training_set.class_indices\n",
|
608 |
+
"if result[0][0]==1:\n",
|
609 |
+
" prediction='dog'\n",
|
610 |
+
"else:\n",
|
611 |
+
" prediction='cat'"
|
612 |
+
]
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"cell_type": "code",
|
616 |
+
"execution_count": 21,
|
617 |
+
"metadata": {},
|
618 |
+
"outputs": [
|
619 |
+
{
|
620 |
+
"name": "stdout",
|
621 |
+
"output_type": "stream",
|
622 |
+
"text": [
|
623 |
+
"dog\n"
|
624 |
+
]
|
625 |
+
}
|
626 |
+
],
|
627 |
+
"source": [
|
628 |
+
"print(prediction)"
|
629 |
+
]
|
630 |
+
}
|
631 |
+
],
|
632 |
+
"metadata": {
|
633 |
+
"colab": {
|
634 |
+
"provenance": []
|
635 |
+
},
|
636 |
+
"kernelspec": {
|
637 |
+
"display_name": "Python 3 (ipykernel)",
|
638 |
+
"language": "python",
|
639 |
+
"name": "python3"
|
640 |
+
},
|
641 |
+
"language_info": {
|
642 |
+
"codemirror_mode": {
|
643 |
+
"name": "ipython",
|
644 |
+
"version": 3
|
645 |
+
},
|
646 |
+
"file_extension": ".py",
|
647 |
+
"mimetype": "text/x-python",
|
648 |
+
"name": "python",
|
649 |
+
"nbconvert_exporter": "python",
|
650 |
+
"pygments_lexer": "ipython3",
|
651 |
+
"version": "3.11.5"
|
652 |
+
}
|
653 |
+
},
|
654 |
+
"nbformat": 4,
|
655 |
+
"nbformat_minor": 1
|
656 |
+
}
|
CNN/Image Recognition Model With CNN.ipynb
ADDED
@@ -0,0 +1,647 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "3DR-eO17geWu"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"## Image Recognition Model With CNN"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {
|
15 |
+
"id": "EMefrVPCg-60"
|
16 |
+
},
|
17 |
+
"source": [
|
18 |
+
"### Importing the libraries"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 22,
|
24 |
+
"metadata": {
|
25 |
+
"id": "w3mybNcNuyRf"
|
26 |
+
},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"import tensorflow as tf\n",
|
30 |
+
"from keras.preprocessing.image import ImageDataGenerator"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": 2,
|
36 |
+
"metadata": {
|
37 |
+
"colab": {
|
38 |
+
"base_uri": "https://localhost:8080/",
|
39 |
+
"height": 38
|
40 |
+
},
|
41 |
+
"id": "Gk81TsV3vNYv",
|
42 |
+
"outputId": "ac51f686-a76e-4be8-ae56-5db116913a8b"
|
43 |
+
},
|
44 |
+
"outputs": [
|
45 |
+
{
|
46 |
+
"data": {
|
47 |
+
"text/plain": [
|
48 |
+
"'2.15.0'"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"execution_count": 2,
|
52 |
+
"metadata": {},
|
53 |
+
"output_type": "execute_result"
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"source": [
|
57 |
+
"tf.__version__"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "markdown",
|
62 |
+
"metadata": {
|
63 |
+
"id": "oxQxCBWyoGPE"
|
64 |
+
},
|
65 |
+
"source": [
|
66 |
+
"## Part 1 - Data Preprocessing"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "markdown",
|
71 |
+
"metadata": {
|
72 |
+
"id": "MvE-heJNo3GG"
|
73 |
+
},
|
74 |
+
"source": [
|
75 |
+
"### Preprocessing the Training set"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 3,
|
81 |
+
"metadata": {
|
82 |
+
"id": "IZPgIbSyzcZz"
|
83 |
+
},
|
84 |
+
"outputs": [
|
85 |
+
{
|
86 |
+
"name": "stdout",
|
87 |
+
"output_type": "stream",
|
88 |
+
"text": [
|
89 |
+
"Found 8000 images belonging to 2 classes.\n"
|
90 |
+
]
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"source": [
|
94 |
+
"train_datagen = ImageDataGenerator(rescale = 1./255,\n",
|
95 |
+
" shear_range = 0.2,\n",
|
96 |
+
" zoom_range = 0.2,\n",
|
97 |
+
" horizontal_flip = True)\n",
|
98 |
+
"training_set = train_datagen.flow_from_directory('dataset/training_set',\n",
|
99 |
+
" target_size = (64, 64),\n",
|
100 |
+
" batch_size = 32,\n",
|
101 |
+
" class_mode = 'binary')"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "markdown",
|
106 |
+
"metadata": {
|
107 |
+
"id": "mrCMmGw9pHys"
|
108 |
+
},
|
109 |
+
"source": [
|
110 |
+
"### Preprocessing the Test set"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 4,
|
116 |
+
"metadata": {
|
117 |
+
"id": "qTwLxo10zn-P"
|
118 |
+
},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"Found 2000 images belonging to 2 classes.\n"
|
125 |
+
]
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"source": [
|
129 |
+
"test_datagen = ImageDataGenerator(rescale = 1./255)\n",
|
130 |
+
"test_set = test_datagen.flow_from_directory('dataset/test_set',\n",
|
131 |
+
" target_size = (64, 64),\n",
|
132 |
+
" batch_size = 32,\n",
|
133 |
+
" class_mode = 'binary')"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "markdown",
|
138 |
+
"metadata": {
|
139 |
+
"id": "af8O4l90gk7B"
|
140 |
+
},
|
141 |
+
"source": [
|
142 |
+
"## Part 2 - Building the CNN"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "markdown",
|
147 |
+
"metadata": {
|
148 |
+
"id": "ces1gXY2lmoX"
|
149 |
+
},
|
150 |
+
"source": [
|
151 |
+
"### Initialising the CNN"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": 5,
|
157 |
+
"metadata": {
|
158 |
+
"id": "OywsP_gTz8VA"
|
159 |
+
},
|
160 |
+
"outputs": [
|
161 |
+
{
|
162 |
+
"name": "stdout",
|
163 |
+
"output_type": "stream",
|
164 |
+
"text": [
|
165 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\backend.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.\n",
|
166 |
+
"\n"
|
167 |
+
]
|
168 |
+
}
|
169 |
+
],
|
170 |
+
"source": [
|
171 |
+
"cnn=tf.keras.models.Sequential()"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "markdown",
|
176 |
+
"metadata": {
|
177 |
+
"id": "u5YJj_XMl5LF"
|
178 |
+
},
|
179 |
+
"source": [
|
180 |
+
"### Step 1 - Convolution"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "code",
|
185 |
+
"execution_count": 6,
|
186 |
+
"metadata": {
|
187 |
+
"id": "dkA5f15L0IRA"
|
188 |
+
},
|
189 |
+
"outputs": [],
|
190 |
+
"source": [
|
191 |
+
"cnn.add(tf.keras.layers.Conv2D(filters=32,kernel_size=3,activation='relu',input_shape=[64,64,3]))"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "markdown",
|
196 |
+
"metadata": {
|
197 |
+
"id": "tf87FpvxmNOJ"
|
198 |
+
},
|
199 |
+
"source": [
|
200 |
+
"### Step 2 - Pooling"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 7,
|
206 |
+
"metadata": {
|
207 |
+
"id": "Khzh28Gj056f"
|
208 |
+
},
|
209 |
+
"outputs": [
|
210 |
+
{
|
211 |
+
"name": "stdout",
|
212 |
+
"output_type": "stream",
|
213 |
+
"text": [
|
214 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\pooling\\max_pooling2d.py:161: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.\n",
|
215 |
+
"\n"
|
216 |
+
]
|
217 |
+
}
|
218 |
+
],
|
219 |
+
"source": [
|
220 |
+
"cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))"
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"cell_type": "markdown",
|
225 |
+
"metadata": {
|
226 |
+
"id": "xaTOgD8rm4mU"
|
227 |
+
},
|
228 |
+
"source": [
|
229 |
+
"### Adding a second convolutional layer"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": 8,
|
235 |
+
"metadata": {
|
236 |
+
"id": "G7GvlV8W1zFv"
|
237 |
+
},
|
238 |
+
"outputs": [],
|
239 |
+
"source": [
|
240 |
+
"cnn.add(tf.keras.layers.Conv2D(filters=32,kernel_size=3,activation='relu'))\n",
|
241 |
+
"cnn.add(tf.keras.layers.MaxPool2D(pool_size=2,strides=2))"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "markdown",
|
246 |
+
"metadata": {
|
247 |
+
"id": "tmiEuvTunKfk"
|
248 |
+
},
|
249 |
+
"source": [
|
250 |
+
"### Step 3 - Flattening"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": 9,
|
256 |
+
"metadata": {
|
257 |
+
"id": "CgmlA6xs16ub"
|
258 |
+
},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"cnn.add(tf.keras.layers.Flatten())"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "markdown",
|
266 |
+
"metadata": {
|
267 |
+
"id": "dAoSECOm203v"
|
268 |
+
},
|
269 |
+
"source": [
|
270 |
+
"### Step 4 - Full Connection"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "code",
|
275 |
+
"execution_count": 10,
|
276 |
+
"metadata": {
|
277 |
+
"id": "1DXEM0C-2Cv6"
|
278 |
+
},
|
279 |
+
"outputs": [],
|
280 |
+
"source": [
|
281 |
+
"cnn.add(tf.keras.layers.Dense(units=128,activation='relu'))"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"cell_type": "markdown",
|
286 |
+
"metadata": {
|
287 |
+
"id": "yTldFvbX28Na"
|
288 |
+
},
|
289 |
+
"source": [
|
290 |
+
"### Step 5 - Output Layer"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"cell_type": "code",
|
295 |
+
"execution_count": 11,
|
296 |
+
"metadata": {
|
297 |
+
"id": "bM9tOMr02dTk"
|
298 |
+
},
|
299 |
+
"outputs": [],
|
300 |
+
"source": [
|
301 |
+
"cnn.add(tf.keras.layers.Dense(units=1,activation='sigmoid'))"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "markdown",
|
306 |
+
"metadata": {
|
307 |
+
"id": "D6XkI90snSDl"
|
308 |
+
},
|
309 |
+
"source": [
|
310 |
+
"## Part 3 - Training the CNN"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "markdown",
|
315 |
+
"metadata": {
|
316 |
+
"id": "vfrFQACEnc6i"
|
317 |
+
},
|
318 |
+
"source": [
|
319 |
+
"### Compiling the CNN"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"execution_count": 12,
|
325 |
+
"metadata": {
|
326 |
+
"id": "QRSs7B252tM8"
|
327 |
+
},
|
328 |
+
"outputs": [
|
329 |
+
{
|
330 |
+
"name": "stdout",
|
331 |
+
"output_type": "stream",
|
332 |
+
"text": [
|
333 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\optimizers\\__init__.py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.\n",
|
334 |
+
"\n"
|
335 |
+
]
|
336 |
+
}
|
337 |
+
],
|
338 |
+
"source": [
|
339 |
+
"cnn.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "markdown",
|
344 |
+
"metadata": {
|
345 |
+
"id": "ehS-v3MIpX2h"
|
346 |
+
},
|
347 |
+
"source": [
|
348 |
+
"### Training the CNN on the Training set and evaluating it on the Test set"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "code",
|
353 |
+
"execution_count": 13,
|
354 |
+
"metadata": {
|
355 |
+
"id": "ibgjSnzf3Mai"
|
356 |
+
},
|
357 |
+
"outputs": [
|
358 |
+
{
|
359 |
+
"name": "stdout",
|
360 |
+
"output_type": "stream",
|
361 |
+
"text": [
|
362 |
+
"Epoch 1/25\n",
|
363 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\utils\\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead.\n",
|
364 |
+
"\n",
|
365 |
+
"WARNING:tensorflow:From C:\\Users\\manik\\anaconda3\\Lib\\site-packages\\keras\\src\\engine\\base_layer_utils.py:384: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead.\n",
|
366 |
+
"\n",
|
367 |
+
"250/250 [==============================] - 75s 298ms/step - loss: 0.6505 - accuracy: 0.6121 - val_loss: 0.5777 - val_accuracy: 0.7080\n",
|
368 |
+
"Epoch 2/25\n",
|
369 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.5849 - accuracy: 0.6865 - val_loss: 0.5398 - val_accuracy: 0.7290\n",
|
370 |
+
"Epoch 3/25\n",
|
371 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.5501 - accuracy: 0.7189 - val_loss: 0.5827 - val_accuracy: 0.6865\n",
|
372 |
+
"Epoch 4/25\n",
|
373 |
+
"250/250 [==============================] - 30s 122ms/step - loss: 0.5212 - accuracy: 0.7369 - val_loss: 0.5147 - val_accuracy: 0.7455\n",
|
374 |
+
"Epoch 5/25\n",
|
375 |
+
"250/250 [==============================] - 30s 119ms/step - loss: 0.4896 - accuracy: 0.7613 - val_loss: 0.5152 - val_accuracy: 0.7550\n",
|
376 |
+
"Epoch 6/25\n",
|
377 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.4721 - accuracy: 0.7770 - val_loss: 0.4776 - val_accuracy: 0.7640\n",
|
378 |
+
"Epoch 7/25\n",
|
379 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.4506 - accuracy: 0.7826 - val_loss: 0.4668 - val_accuracy: 0.7845\n",
|
380 |
+
"Epoch 8/25\n",
|
381 |
+
"250/250 [==============================] - 32s 126ms/step - loss: 0.4380 - accuracy: 0.7868 - val_loss: 0.4637 - val_accuracy: 0.7870\n",
|
382 |
+
"Epoch 9/25\n",
|
383 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.4231 - accuracy: 0.8026 - val_loss: 0.4680 - val_accuracy: 0.7850\n",
|
384 |
+
"Epoch 10/25\n",
|
385 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.4048 - accuracy: 0.8135 - val_loss: 0.5443 - val_accuracy: 0.7470\n",
|
386 |
+
"Epoch 11/25\n",
|
387 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.3917 - accuracy: 0.8242 - val_loss: 0.4698 - val_accuracy: 0.7875\n",
|
388 |
+
"Epoch 12/25\n",
|
389 |
+
"250/250 [==============================] - 37s 148ms/step - loss: 0.3743 - accuracy: 0.8284 - val_loss: 0.4812 - val_accuracy: 0.7940\n",
|
390 |
+
"Epoch 13/25\n",
|
391 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.3720 - accuracy: 0.8317 - val_loss: 0.4309 - val_accuracy: 0.8140\n",
|
392 |
+
"Epoch 14/25\n",
|
393 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.3497 - accuracy: 0.8443 - val_loss: 0.4593 - val_accuracy: 0.7980\n",
|
394 |
+
"Epoch 15/25\n",
|
395 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.3407 - accuracy: 0.8514 - val_loss: 0.4699 - val_accuracy: 0.7925\n",
|
396 |
+
"Epoch 16/25\n",
|
397 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.3249 - accuracy: 0.8593 - val_loss: 0.4712 - val_accuracy: 0.8035\n",
|
398 |
+
"Epoch 17/25\n",
|
399 |
+
"250/250 [==============================] - 30s 122ms/step - loss: 0.3044 - accuracy: 0.8748 - val_loss: 0.4846 - val_accuracy: 0.8060\n",
|
400 |
+
"Epoch 18/25\n",
|
401 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.3082 - accuracy: 0.8608 - val_loss: 0.4750 - val_accuracy: 0.8040\n",
|
402 |
+
"Epoch 19/25\n",
|
403 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.2860 - accuracy: 0.8752 - val_loss: 0.4533 - val_accuracy: 0.8180\n",
|
404 |
+
"Epoch 20/25\n",
|
405 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.2761 - accuracy: 0.8792 - val_loss: 0.5786 - val_accuracy: 0.7975\n",
|
406 |
+
"Epoch 21/25\n",
|
407 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.2634 - accuracy: 0.8861 - val_loss: 0.4989 - val_accuracy: 0.8085\n",
|
408 |
+
"Epoch 22/25\n",
|
409 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.2491 - accuracy: 0.8946 - val_loss: 0.5098 - val_accuracy: 0.8160\n",
|
410 |
+
"Epoch 23/25\n",
|
411 |
+
"250/250 [==============================] - 31s 124ms/step - loss: 0.2385 - accuracy: 0.8981 - val_loss: 0.5296 - val_accuracy: 0.8115\n",
|
412 |
+
"Epoch 24/25\n",
|
413 |
+
"250/250 [==============================] - 30s 120ms/step - loss: 0.2260 - accuracy: 0.9040 - val_loss: 0.5117 - val_accuracy: 0.8105\n",
|
414 |
+
"Epoch 25/25\n",
|
415 |
+
"250/250 [==============================] - 30s 121ms/step - loss: 0.2117 - accuracy: 0.9146 - val_loss: 0.5145 - val_accuracy: 0.8180\n"
|
416 |
+
]
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"data": {
|
420 |
+
"text/plain": [
|
421 |
+
"<keras.src.callbacks.History at 0x1f3d5467610>"
|
422 |
+
]
|
423 |
+
},
|
424 |
+
"execution_count": 13,
|
425 |
+
"metadata": {},
|
426 |
+
"output_type": "execute_result"
|
427 |
+
}
|
428 |
+
],
|
429 |
+
"source": [
|
430 |
+
"cnn.fit(x=training_set,validation_data=test_set,epochs=25)"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "markdown",
|
435 |
+
"metadata": {
|
436 |
+
"id": "U3PZasO0006Z"
|
437 |
+
},
|
438 |
+
"source": [
|
439 |
+
"## Part 4 - Making a single prediction"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"cell_type": "code",
|
444 |
+
"execution_count": 14,
|
445 |
+
"metadata": {
|
446 |
+
"id": "PQGfPACq3mGS"
|
447 |
+
},
|
448 |
+
"outputs": [
|
449 |
+
{
|
450 |
+
"name": "stdout",
|
451 |
+
"output_type": "stream",
|
452 |
+
"text": [
|
453 |
+
"1/1 [==============================] - 0s 107ms/step\n"
|
454 |
+
]
|
455 |
+
}
|
456 |
+
],
|
457 |
+
"source": [
|
458 |
+
"import numpy as np\n",
|
459 |
+
"from keras.preprocessing import image\n",
|
460 |
+
"test_image=image.load_img('dataset/single_prediction/cat_or_dog_1.jpg',target_size=(64,64))\n",
|
461 |
+
"test_image=image.img_to_array(test_image)\n",
|
462 |
+
"test_image=np.expand_dims(test_image,axis=0)\n",
|
463 |
+
"result=cnn.predict(test_image)\n",
|
464 |
+
"training_set.class_indices\n",
|
465 |
+
"if result[0][0]==1:\n",
|
466 |
+
" prediction='dog'\n",
|
467 |
+
"else:\n",
|
468 |
+
" prediction='cat'"
|
469 |
+
]
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"cell_type": "code",
|
473 |
+
"execution_count": 15,
|
474 |
+
"metadata": {
|
475 |
+
"id": "xMvlNcFN5yEX"
|
476 |
+
},
|
477 |
+
"outputs": [
|
478 |
+
{
|
479 |
+
"name": "stdout",
|
480 |
+
"output_type": "stream",
|
481 |
+
"text": [
|
482 |
+
"dog\n"
|
483 |
+
]
|
484 |
+
}
|
485 |
+
],
|
486 |
+
"source": [
|
487 |
+
"print(prediction)"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"cell_type": "code",
|
492 |
+
"execution_count": 16,
|
493 |
+
"metadata": {},
|
494 |
+
"outputs": [
|
495 |
+
{
|
496 |
+
"name": "stdout",
|
497 |
+
"output_type": "stream",
|
498 |
+
"text": [
|
499 |
+
"1/1 [==============================] - 0s 25ms/step\n"
|
500 |
+
]
|
501 |
+
}
|
502 |
+
],
|
503 |
+
"source": [
|
504 |
+
"import numpy as np\n",
|
505 |
+
"from keras.preprocessing import image\n",
|
506 |
+
"test_image=image.load_img('dataset/single_prediction/cat_or_dog_2.jpg',target_size=(64,64))\n",
|
507 |
+
"test_image=image.img_to_array(test_image)\n",
|
508 |
+
"test_image=np.expand_dims(test_image,axis=0)\n",
|
509 |
+
"result=cnn.predict(test_image)\n",
|
510 |
+
"training_set.class_indices\n",
|
511 |
+
"if result[0][0]==1:\n",
|
512 |
+
" prediction='dog'\n",
|
513 |
+
"else:\n",
|
514 |
+
" prediction='cat'"
|
515 |
+
]
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"cell_type": "code",
|
519 |
+
"execution_count": 17,
|
520 |
+
"metadata": {},
|
521 |
+
"outputs": [
|
522 |
+
{
|
523 |
+
"name": "stdout",
|
524 |
+
"output_type": "stream",
|
525 |
+
"text": [
|
526 |
+
"cat\n"
|
527 |
+
]
|
528 |
+
}
|
529 |
+
],
|
530 |
+
"source": [
|
531 |
+
"print(prediction)"
|
532 |
+
]
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"cell_type": "code",
|
536 |
+
"execution_count": 18,
|
537 |
+
"metadata": {},
|
538 |
+
"outputs": [
|
539 |
+
{
|
540 |
+
"name": "stdout",
|
541 |
+
"output_type": "stream",
|
542 |
+
"text": [
|
543 |
+
"1/1 [==============================] - 0s 26ms/step\n"
|
544 |
+
]
|
545 |
+
}
|
546 |
+
],
|
547 |
+
"source": [
|
548 |
+
"import numpy as np\n",
|
549 |
+
"from keras.preprocessing import image\n",
|
550 |
+
"test_image=image.load_img('dataset/single_prediction/cat_or_dog_3.jpg',target_size=(64,64))\n",
|
551 |
+
"test_image=image.img_to_array(test_image)\n",
|
552 |
+
"test_image=np.expand_dims(test_image,axis=0)\n",
|
553 |
+
"result=cnn.predict(test_image)\n",
|
554 |
+
"training_set.class_indices\n",
|
555 |
+
"if result[0][0]==1:\n",
|
556 |
+
" prediction='dog'\n",
|
557 |
+
"else:\n",
|
558 |
+
" prediction='cat'"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"cell_type": "code",
|
563 |
+
"execution_count": 19,
|
564 |
+
"metadata": {},
|
565 |
+
"outputs": [
|
566 |
+
{
|
567 |
+
"name": "stdout",
|
568 |
+
"output_type": "stream",
|
569 |
+
"text": [
|
570 |
+
"cat\n"
|
571 |
+
]
|
572 |
+
}
|
573 |
+
],
|
574 |
+
"source": [
|
575 |
+
"print(prediction)"
|
576 |
+
]
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"cell_type": "code",
|
580 |
+
"execution_count": 20,
|
581 |
+
"metadata": {},
|
582 |
+
"outputs": [
|
583 |
+
{
|
584 |
+
"name": "stdout",
|
585 |
+
"output_type": "stream",
|
586 |
+
"text": [
|
587 |
+
"1/1 [==============================] - 0s 25ms/step\n"
|
588 |
+
]
|
589 |
+
}
|
590 |
+
],
|
591 |
+
"source": [
|
592 |
+
"import numpy as np\n",
|
593 |
+
"from keras.preprocessing import image\n",
|
594 |
+
"test_image=image.load_img('dataset/single_prediction/cat_or_dog_4.jpg',target_size=(64,64))\n",
|
595 |
+
"test_image=image.img_to_array(test_image)\n",
|
596 |
+
"test_image=np.expand_dims(test_image,axis=0)\n",
|
597 |
+
"result=cnn.predict(test_image)\n",
|
598 |
+
"training_set.class_indices\n",
|
599 |
+
"if result[0][0]==1:\n",
|
600 |
+
" prediction='dog'\n",
|
601 |
+
"else:\n",
|
602 |
+
" prediction='cat'"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"cell_type": "code",
|
607 |
+
"execution_count": 21,
|
608 |
+
"metadata": {},
|
609 |
+
"outputs": [
|
610 |
+
{
|
611 |
+
"name": "stdout",
|
612 |
+
"output_type": "stream",
|
613 |
+
"text": [
|
614 |
+
"dog\n"
|
615 |
+
]
|
616 |
+
}
|
617 |
+
],
|
618 |
+
"source": [
|
619 |
+
"print(prediction)"
|
620 |
+
]
|
621 |
+
}
|
622 |
+
],
|
623 |
+
"metadata": {
|
624 |
+
"colab": {
|
625 |
+
"provenance": []
|
626 |
+
},
|
627 |
+
"kernelspec": {
|
628 |
+
"display_name": "Python 3 (ipykernel)",
|
629 |
+
"language": "python",
|
630 |
+
"name": "python3"
|
631 |
+
},
|
632 |
+
"language_info": {
|
633 |
+
"codemirror_mode": {
|
634 |
+
"name": "ipython",
|
635 |
+
"version": 3
|
636 |
+
},
|
637 |
+
"file_extension": ".py",
|
638 |
+
"mimetype": "text/x-python",
|
639 |
+
"name": "python",
|
640 |
+
"nbconvert_exporter": "python",
|
641 |
+
"pygments_lexer": "ipython3",
|
642 |
+
"version": "3.11.5"
|
643 |
+
}
|
644 |
+
},
|
645 |
+
"nbformat": 4,
|
646 |
+
"nbformat_minor": 1
|
647 |
+
}
|
CNN/dataset/.DS_Store
ADDED
Binary file (10.2 kB). View file
|
|
CNN/dataset/__MACOSX/._dataset
ADDED
Binary file (212 Bytes). View file
|
|
CNN/dataset/__MACOSX/dataset/._.DS_Store
ADDED
Binary file (212 Bytes). View file
|
|
CNN/dataset/__MACOSX/dataset/._test_set
ADDED
Binary file (212 Bytes). View file
|
|
CNN/dataset/__MACOSX/dataset/._training_set
ADDED
Binary file (212 Bytes). View file
|
|
CNN/dataset/__MACOSX/dataset/test_set/._.DS_Store
ADDED
Binary file (212 Bytes). View file
|
|
CNN/dataset/__MACOSX/dataset/test_set/._cats
ADDED
Binary file (212 Bytes). View file
|
|
CNN/dataset/__MACOSX/dataset/test_set/._dogs
ADDED
Binary file (212 Bytes). View file
|
|
CNN/dataset/__MACOSX/dataset/test_set/cats/._.DS_Store
ADDED
Binary file (212 Bytes). View file
|
|
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4001.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4002.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4003.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4004.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4005.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4006.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4007.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4008.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4009.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4010.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4011.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4012.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4013.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4014.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4015.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4016.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4017.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4018.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4019.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4020.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4021.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4022.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4023.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4024.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4025.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4026.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4027.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4028.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4029.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4030.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4031.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4032.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4033.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4034.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4035.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4036.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4037.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4038.jpg
ADDED
CNN/dataset/__MACOSX/dataset/test_set/cats/._cat.4039.jpg
ADDED