Spaces:
Runtime error
Runtime error
import gradio as gr | |
import ctranslate2 | |
from transformers import AutoModel, AutoTokenizer | |
# Load the model and tokenizer from Hugging Face | |
model_id = "Makima57/deepseek-math-Numina" | |
model = AutoModel.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") | |
model_path = model_id | |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") | |
# Function to generate predictions using the model | |
def get_prediction(question): | |
input_text = model_prompt + question | |
input_tokens = tokenizer.tokenize(input_text) | |
results = generator.generate_batch([input_tokens]) | |
output_tokens = results[0].sequences[0] | |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) | |
return predicted_answer | |
# Gradio interface for user input and output | |
def gradio_interface(question, correct_answer): | |
predicted_answer = get_prediction(question) | |
return { | |
"question": question, | |
"predicted_answer": predicted_answer, | |
"correct_answer": correct_answer, | |
} | |
# Gradio app setup | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(label="Math Question"), | |
gr.Textbox(label="Correct Answer"), | |
], | |
outputs=[ | |
gr.JSON(label="Results") | |
], | |
title="Math Question Solver", | |
description="Enter a math question to get the model prediction." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |