Makima57's picture
Upload app.py with huggingface_hub
115fce4 verified
raw
history blame
1.42 kB
import gradio as gr
import ctranslate2
from transformers import AutoTokenizer
# Define the model and tokenizer loading
model_prompt = "Solve the following mathematical problem: "
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
model_path = "/kaggle/working/deepseek-math-Numina"
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
# Function to generate predictions using the model
def get_prediction(question):
input_text = model_prompt + question
input_tokens = tokenizer.tokenize(input_text)
results = generator.generate_batch([input_tokens])
output_tokens = results[0].sequences[0]
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
return predicted_answer
# Gradio interface for user input and output
def gradio_interface(question, correct_answer):
predicted_answer = get_prediction(question)
return {
"question": question,
"predicted_answer": predicted_answer,
"correct_answer": correct_answer,
}
# Gradio app setup
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Math Question"),
gr.Textbox(label="Correct Answer"),
],
outputs=[
gr.JSON(label="Results")
],
title="Math Question Solver",
description="Enter a math question to get the model prediction."
)
if __name__ == "__main__":
interface.launch()