Spaces:
Sleeping
Sleeping
import os, torch | |
# from PIL import Image | |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from diffusers import UNet2DConditionModel, AutoencoderKL | |
from diffusers import EulerDiscreteScheduler | |
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
def infer(prompt): | |
ckpt_dir = f'{root_dir}/weights/Kolors' | |
text_encoder = ChatGLMModel.from_pretrained( | |
f'{ckpt_dir}/text_encoder', | |
torch_dtype=torch.float16).half() | |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half() | |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half() | |
pipe = StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
force_zeros_for_empty_prompt=False) | |
pipe = pipe.to("cuda") | |
pipe.enable_model_cpu_offload() | |
image = pipe( | |
prompt=prompt, | |
height=1024, | |
width=1024, | |
num_inference_steps=50, | |
guidance_scale=5.0, | |
num_images_per_prompt=1, | |
generator= torch.Generator(pipe.device).manual_seed(66)).images[0] | |
image.save(f'{root_dir}/scripts/outputs/sample_test.jpg') | |
if __name__ == '__main__': | |
import fire | |
fire.Fire(infer) | |