Spaces:
Running
Running
File size: 21,380 Bytes
879cbd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
# flake8: noqa: E402
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
import commons
import utils
from data_utils import (
TextAudioSpeakerLoader,
TextAudioSpeakerCollate,
DistributedBucketSampler,
)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
DurationDiscriminator,
)
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from text.symbols import symbols
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = (
True # If encontered training problem,please try to disable TF32.
)
torch.set_float32_matmul_precision("medium")
torch.backends.cudnn.benchmark = True
torch.backends.cuda.sdp_kernel("flash")
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(
True
) # Not available if torch version is lower than 2.0
torch.backends.cuda.enable_math_sdp(True)
global_step = 0
import os
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '8880'
os.environ['WORLD_SIZE'] = '1'
os.environ['RANK'] = '0'
def run():
dist.init_process_group(
backend="gloo",
init_method="env://", # Due to some training problem,we proposed to use gloo instead of nccl.
) # Use torchrun instead of mp.spawn
rank = dist.get_rank()
n_gpus = dist.get_world_size()
hps = utils.get_hparams()
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(
train_dataset,
num_workers=16,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
prefetch_factor=4,
) # DataLoader config could be adjusted.
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
eval_loader = DataLoader(
eval_dataset,
num_workers=0,
shuffle=False,
batch_size=1,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
if (
"use_noise_scaled_mas" in hps.model.keys()
and hps.model.use_noise_scaled_mas is True
):
print("Using noise scaled MAS for VITS2")
mas_noise_scale_initial = 0.01
noise_scale_delta = 2e-6
else:
print("Using normal MAS for VITS1")
mas_noise_scale_initial = 0.0
noise_scale_delta = 0.0
if (
"use_duration_discriminator" in hps.model.keys()
and hps.model.use_duration_discriminator is True
):
print("Using duration discriminator for VITS2")
net_dur_disc = DurationDiscriminator(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(rank)
if (
"use_spk_conditioned_encoder" in hps.model.keys()
and hps.model.use_spk_conditioned_encoder is True
):
if hps.data.n_speakers == 0:
raise ValueError(
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
)
else:
print("Using normal encoder for VITS1")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
mas_noise_scale_initial=mas_noise_scale_initial,
noise_scale_delta=noise_scale_delta,
**hps.model,
).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
filter(lambda p: p.requires_grad, net_g.parameters()),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
if net_dur_disc is not None:
optim_dur_disc = torch.optim.AdamW(
net_dur_disc.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
else:
optim_dur_disc = None
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
if net_dur_disc is not None:
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
try:
if net_dur_disc is not None:
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
net_dur_disc,
optim_dur_disc,
skip_optimizer=hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True,
)
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
net_g,
optim_g,
skip_optimizer=hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True,
)
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
net_d,
optim_d,
skip_optimizer=hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True,
)
if not optim_g.param_groups[0].get("initial_lr"):
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
if not optim_d.param_groups[0].get("initial_lr"):
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
epoch_str = max(epoch_str, 1)
global_step = (epoch_str - 1) * len(train_loader)
except Exception as e:
print(e)
epoch_str = 1
global_step = 0
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
if net_dur_disc is not None:
if not optim_dur_disc.param_groups[0].get("initial_lr"):
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
else:
scheduler_dur_disc = None
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d, net_dur_disc],
[optim_g, optim_d, optim_dur_disc],
[scheduler_g, scheduler_d, scheduler_dur_disc],
scaler,
[train_loader, eval_loader],
logger,
[writer, writer_eval],
)
else:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d, net_dur_disc],
[optim_g, optim_d, optim_dur_disc],
[scheduler_g, scheduler_d, scheduler_dur_disc],
scaler,
[train_loader, None],
None,
None,
)
scheduler_g.step()
scheduler_d.step()
if net_dur_disc is not None:
scheduler_dur_disc.step()
def train_and_evaluate(
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
):
net_g, net_d, net_dur_disc = nets
optim_g, optim_d, optim_dur_disc = optims
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
if net_dur_disc is not None:
net_dur_disc.train()
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
tone,
language,
bert,
ja_bert,
) in tqdm(enumerate(train_loader)):
if net_g.module.use_noise_scaled_mas:
current_mas_noise_scale = (
net_g.module.mas_noise_scale_initial
- net_g.module.noise_scale_delta * global_step
)
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
rank, non_blocking=True
)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
rank, non_blocking=True
)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
rank, non_blocking=True
)
speakers = speakers.cuda(rank, non_blocking=True)
tone = tone.cuda(rank, non_blocking=True)
language = language.cuda(rank, non_blocking=True)
bert = bert.cuda(rank, non_blocking=True)
ja_bert = ja_bert.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
(
y_hat,
l_length,
attn,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
(hidden_x, logw, logw_),
) = net_g(
x,
x_lengths,
spec,
spec_lengths,
speakers,
tone,
language,
bert,
ja_bert,
)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y = commons.slice_segments(
y, ids_slice * hps.data.hop_length, hps.train.segment_size
) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
loss_disc_all = loss_disc
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
)
with autocast(enabled=False):
# TODO: I think need to mean using the mask, but for now, just mean all
(
loss_dur_disc,
losses_dur_disc_r,
losses_dur_disc_g,
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
loss_dur_disc_all = loss_dur_disc
optim_dur_disc.zero_grad()
scaler.scale(loss_dur_disc_all).backward()
scaler.unscale_(optim_dur_disc)
commons.clip_grad_value_(net_dur_disc.parameters(), None)
scaler.step(optim_dur_disc)
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
if net_dur_disc is not None:
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
loss_gen_all += loss_dur_gen
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]["lr"]
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
logger.info(
"Train Epoch: {} [{:.0f}%]".format(
epoch, 100.0 * batch_idx / len(train_loader)
)
)
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc_all,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g,
}
scalar_dict.update(
{
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/dur": loss_dur,
"loss/g/kl": loss_kl,
}
)
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
)
scalar_dict.update(
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
)
scalar_dict.update(
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
)
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()
),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()
),
"all/mel": utils.plot_spectrogram_to_numpy(
mel[0].data.cpu().numpy()
),
"all/attn": utils.plot_alignment_to_numpy(
attn[0, 0].data.cpu().numpy()
),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
)
if net_dur_disc is not None:
utils.save_checkpoint(
net_dur_disc,
optim_dur_disc,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
)
keep_ckpts = getattr(hps.train, "keep_ckpts", 5)
if keep_ckpts > 0:
utils.clean_checkpoints(
path_to_models=hps.model_dir,
n_ckpts_to_keep=keep_ckpts,
sort_by_time=True,
)
global_step += 1
if rank == 0:
logger.info("====> Epoch: {}".format(epoch))
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
print("Evaluating ...")
with torch.no_grad():
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
tone,
language,
bert,
ja_bert,
) in enumerate(eval_loader):
x, x_lengths = x.cuda(), x_lengths.cuda()
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
y, y_lengths = y.cuda(), y_lengths.cuda()
speakers = speakers.cuda()
bert = bert.cuda()
ja_bert = ja_bert.cuda()
tone = tone.cuda()
language = language.cuda()
for use_sdp in [True, False]:
y_hat, attn, mask, *_ = generator.module.infer(
x,
x_lengths,
speakers,
tone,
language,
bert,
ja_bert,
y=spec,
max_len=1000,
sdp_ratio=0.0 if not use_sdp else 1.0,
)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
image_dict.update(
{
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].cpu().numpy()
)
}
)
audio_dict.update(
{
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
0, :, : y_hat_lengths[0]
]
}
)
image_dict.update(
{
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
mel[0].cpu().numpy()
)
}
)
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate,
)
generator.train()
if __name__ == "__main__":
run()
|