Spaces:
Running
Running
File size: 20,599 Bytes
879cbd2 0a949ac 879cbd2 0a949ac 879cbd2 28fb579 879cbd2 0a949ac eb8ecd4 0a949ac eb8ecd4 0a949ac eb8ecd4 0a949ac eb8ecd4 0a949ac eb8ecd4 0a949ac 879cbd2 ccbc190 879cbd2 5b9999d 879cbd2 0a949ac 879cbd2 0a949ac 28fb579 0a949ac 879cbd2 ccbc190 879cbd2 0a949ac ccbc190 879cbd2 0a949ac 879cbd2 ccbc190 879cbd2 0a949ac 879cbd2 0a949ac 879cbd2 0a949ac 879cbd2 ccbc190 879cbd2 0a949ac 879cbd2 0a949ac 879cbd2 0a949ac dc23363 0a949ac dc23363 0a949ac ccbc190 0a949ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# flake8: noqa: E402
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import datetime
import numpy as np
import torch
from ebooklib import epub
import PyPDF2
from PyPDF2 import PdfReader
import zipfile
import shutil
import sys, os
import json
from bs4 import BeautifulSoup
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import re
from scipy.io.wavfile import write
net_g = None
BandList = {
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
"Roselia":["友希那","紗夜","リサ","燐子","あこ"],
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
"MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"],
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}
if sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
device = "cuda"
def is_japanese(string):
for ch in string:
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
return True
return False
def extrac(text):
text = re.sub("<[^>]*>","",text)
result_list = re.split(r'\n', text)
final_list = []
for i in result_list:
i = i.replace('\n','').replace(' ','')
#Current length of single sentence: 20
if len(i)>1:
if len(i) > 20:
try:
cur_list = re.split(r'。|!', i)
for i in cur_list:
if len(i)>1:
final_list.append(i+'。')
except:
pass
else:
final_list.append(i)
'''
final_list.append(i)
'''
final_list = [x for x in final_list if x != '']
return final_list
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "JA":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
global net_g
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
return audio
def tts_fn(
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,LongSentence
):
if not LongSentence:
with torch.no_grad():
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language= "JP" if is_japanese(text) else "ZH",
)
torch.cuda.empty_cache()
return (hps.data.sampling_rate, audio)
else:
audiopath = 'voice.wav'
a = ['【','[','(','(']
b = ['】',']',')',')']
for i in a:
text = text.replace(i,'<')
for i in b:
text = text.replace(i,'>')
final_list = extrac(text.replace('“','').replace('”',''))
audio_fin = []
for sentence in final_list:
with torch.no_grad():
audio = infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language= "JP" if is_japanese(text) else "ZH",
)
audio_fin.append(audio)
return (hps.data.sampling_rate, np.concatenate(audio_fin))
def split_into_sentences(text):
"""将文本分割为句子,基于中文的标点符号"""
sentences = re.split(r'(?<=[。!?…\n])', text)
return [sentence.strip() for sentence in sentences if sentence]
def seconds_to_ass_time(seconds):
"""将秒数转换为ASS时间格式"""
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
seconds = int(seconds) % 60
milliseconds = int((seconds - int(seconds)) * 1000)
return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10))
def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
audio_fin = []
ass_entries = []
start_time = 0
ass_header = """[Script Info]
; Script generated by OpenAI Assistant
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""
for sentence in group:
try:
print(sentence)
FakeSpeaker = sentence.split("|")[0]
print(FakeSpeaker)
SpeakersList = re.split('\n', spealerList)
if FakeSpeaker in list(hps.data.spk2id.keys()):
speaker = FakeSpeaker
for i in SpeakersList:
if FakeSpeaker == i.split("|")[1]:
speaker = i.split("|")[0]
speaker_ids = hps.data.spk2id
_, audio = tts_fn(sentence.split("|")[-1], speaker=speaker, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, LongSentence=True)
silence_frames = int(silenceTime * 44010)
silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
audio_fin.append(audio)
audio_fin.append(silence_data)
duration = len(audio) / sampling_rate
end_time = start_time + duration + silenceTime
ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
start_time = end_time
except:
pass
wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')
write(wav_filename, sampling_rate, np.concatenate(audio_fin))
with open(ass_filename, 'w', encoding='utf-8') as f:
f.write(ass_header + '\n'.join(ass_entries))
return (hps.data.sampling_rate, np.concatenate(audio_fin))
def extract_text_from_epub(file_path):
book = epub.read_epub(file_path)
content = []
for item in book.items:
if isinstance(item, epub.EpubHtml):
soup = BeautifulSoup(item.content, 'html.parser')
content.append(soup.get_text())
return '\n'.join(content)
def extract_text_from_pdf(file_path):
with open(file_path, 'rb') as file:
reader = PdfReader(file)
content = [page.extract_text() for page in reader.pages]
return '\n'.join(content)
def extract_text_from_game2(data):
current_content = []
def _extract(data, current_data=None):
nonlocal current_content
if current_data is None:
current_data = {}
if isinstance(data, dict):
if 'name' in data and 'body' in data:
current_name = data['name']
current_body = data['body'].replace('\n', '')
current_content.append(f"{current_name}|{current_body}")
for key, value in data.items():
_extract(value, dict(current_data))
elif isinstance(data, list):
for item in data:
_extract(item, dict(current_data))
_extract(data)
return '\n'.join(current_content)
def extract_text_from_file(inputFile):
file_extension = os.path.splitext(inputFile)[1].lower()
if file_extension == ".epub":
return extract_text_from_epub(inputFile)
elif file_extension == ".pdf":
return extract_text_from_pdf(inputFile)
elif file_extension == ".txt":
with open(inputFile, 'r', encoding='utf-8') as f:
return f.read()
elif file_extension == ".asset":
with open(inputFile, 'r', encoding='utf-8') as f:
content = json.load(f)
return extract_text_from_game2(content) if extract_text_from_game(content) != '' else extract_text_from_game(content)
else:
raise ValueError(f"Unsupported file format: {file_extension}")
def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
directory_path = "books"
output_path = "books/audiobook_part_1.wav"
if os.path.exists(directory_path):
shutil.rmtree(directory_path)
os.makedirs(directory_path)
text = extract_text_from_file(inputFile.name)
sentences = split_into_sentences(text)
GROUP_SIZE = groupsize
for i in range(0, len(sentences), GROUP_SIZE):
group = sentences[i:i+GROUP_SIZE]
if spealerList == "":
spealerList = "无"
result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime)
if not torch.cuda.is_available():
return result
return result
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m", "--model", default="./logs/Bangdream/G_28000.pth", help="path of your model"
)
parser.add_argument(
"-c",
"--config",
default="./logs/Bangdream/config.json",
help="path of your config file",
)
parser.add_argument(
"--share", default=True, help="make link public", action="store_true"
)
parser.add_argument(
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
)
args = parser.parse_args()
if args.debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_file(args.config)
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
languages = ["ZH", "JP"]
examples = [
["filelist/Scenarioband6-018.asset", 500, "つくし", "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子", "扩展功能"],
]
with gr.Blocks() as app:
gr.Markdown(
f"少歌邦邦全员TTS,使用本模型请严格遵守法律法规!\n 发布二创作品请注明项目和本模型作者<a href='https://space.bilibili.com/19874615/'>B站@Mahiroshi</a>及项目链接\n从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看使用说明</a>"
)
for band in BandList:
with gr.TabItem(band):
for name in BandList[band]:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
'</div>'
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
)
with gr.Column():
text = gr.TextArea(
label="输入纯日语或者中文",
placeholder="输入纯日语或者中文",
value="有个人躺在地上,哀嚎......\n有个人睡着了,睡在盒子里。\n我要把它打开,看看他的梦是什么。",
)
btn = gr.Button("点击生成", variant="primary")
audio_output = gr.Audio(label="Output Audio")
with gr.Accordion(label="其它参数设定", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
)
LongSentence = gr.Checkbox(value=True, label="Generate LongSentence")
speaker = gr.Dropdown(
choices=speakers, value=name, label="说话人"
)
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
LongSentence,
],
outputs=[audio_output],
)
for i in examples:
with gr.Tab(i[-1]):
with gr.Row():
with gr.Column():
gr.Markdown(
f"从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看自制galgame使用说明\n</a>"
)
inputFile = gr.inputs.File(label="上传txt(可设置角色对应表)、epub或mobi文件")
groupSize = gr.Slider(
minimum=10, maximum=1000,value = i[1], step=1, label="当个音频文件包含的最大字数"
)
silenceTime = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.1, label="句子的间隔"
)
spealerList = gr.TextArea(
label="角色对应表",
placeholder="左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList1}|{SeakerInUploadText1}\n{ChoseSpeakerFromConfigList2}|{SeakerInUploadText2}\n{ChoseSpeakerFromConfigList3}|{SeakerInUploadText3}\n",
value = i[3],
)
speaker = gr.Dropdown(
choices=speakers, value = i[2], label="选择默认说话人"
)
with gr.Column():
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度"
)
LastAudioOutput = gr.Audio(label="当用cuda在本地运行时才能在book文件夹下浏览全部合成内容")
btn2 = gr.Button("点击生成", variant="primary")
btn2.click(
audiobook,
inputs=[
inputFile,
groupSize,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
spealerList,
silenceTime
],
outputs=[LastAudioOutput],
)
app.launch()
|