Spaces:
Running
Running
File size: 7,163 Bytes
dc23363 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# flake8: noqa: E402
import sys, os
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import numpy as np
net_g = None
if sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
device = "cuda"
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "JP":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
global net_g
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
torch.cuda.empty_cache()
return audio
def tts_fn(
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language
):
slices = text.split("|")
audio_list = []
with torch.no_grad():
for slice in slices:
audio = infer(
slice,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
)
audio_list.append(audio)
silence = np.zeros(hps.data.sampling_rate) # ็ๆ1็ง็้้ณ
audio_list.append(silence) # ๅฐ้้ณๆทปๅ ๅฐๅ่กจไธญ
audio_concat = np.concatenate(audio_list)
return "Success", (hps.data.sampling_rate, audio_concat)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m", "--model", default="./logs/as/G_8000.pth", help="path of your model"
)
parser.add_argument(
"-c",
"--config",
default="./configs/config.json",
help="path of your config file",
)
parser.add_argument(
"--share", default=False, help="make link public", action="store_true"
)
parser.add_argument(
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
)
args = parser.parse_args()
if args.debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_file(args.config)
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
languages = ["ZH", "JP"]
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
text = gr.TextArea(
label="Text",
placeholder="Input Text Here",
value="ๅ่ก่ไธๅ่ก่็ฎ๏ผไธๅ่ก่ๅๅ่ก่็ฎใ",
)
speaker = gr.Dropdown(
choices=speakers, value=speakers[0], label="Speaker"
)
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
)
language = gr.Dropdown(
choices=languages, value=languages[0], label="Language"
)
btn = gr.Button("Generate!", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio")
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
],
outputs=[text_output, audio_output],
)
webbrowser.open("http://127.0.0.1:7860")
app.launch(share=args.share)
|