File size: 6,447 Bytes
0372395
 
 
 
 
5422b18
879cbd2
0372395
 
879cbd2
0372395
 
 
 
879cbd2
0372395
 
 
879cbd2
0372395
 
 
 
 
 
 
 
879cbd2
0372395
 
879cbd2
0372395
 
 
 
879cbd2
0372395
 
879cbd2
0372395
 
 
879cbd2
0372395
879cbd2
0372395
879cbd2
5422b18
0372395
 
 
 
 
 
 
 
5422b18
 
0372395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5422b18
0372395
 
 
 
5422b18
0372395
 
5422b18
 
 
 
0372395
 
 
5422b18
0372395
 
 
 
 
 
 
 
 
 
5422b18
0372395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5422b18
 
 
 
0372395
 
 
 
879cbd2
0372395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
0372395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5422b18
 
 
0372395
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import os
from pathlib import Path

import logging
import re_matching

from flask import Flask, request, jsonify
from flask_cors import CORS

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)
import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm

import utils
from config import config

import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature

from text.cleaner import clean_text
import utils

from models import SynthesizerTrn
from text.symbols import symbols
import sys

from scipy.io.wavfile import write

net_g = None


'''
device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
'''
device = 'cpu'

def get_net_g(model_path: str,  device: str, hps):
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g


def get_text(text, language_str, hps, device):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
    #print(text)
    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert_ori = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert_ori.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert_ori
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "JP":
        bert = torch.zeros(1024, len(phone))
        ja_bert = bert_ori
        en_bert = torch.zeros(1024, len(phone))
    else:
        raise ValueError("language_str should be ZH, JP or EN")

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, en_bert, phone, tone, language

def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    reference_audio=None,
    emotion='Happy',
):

    language= 'JP' if is_japanese(text) else 'ZH'
    if isinstance(reference_audio, np.ndarray):
        emo = get_clap_audio_feature(reference_audio, device)
    else:
        emo = get_clap_text_feature(emotion, device)
    emo = torch.squeeze(emo, dim=1)
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text, language, hps, device
    )
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        write("temp.wav", 44100, audio)
        return 'success'

def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def loadmodel(model):
    _ = net_g.eval()
    _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
    return "success"

app = Flask(__name__)
CORS(app)
@app.route('/tts')

def tts():
    # 这些没必要改
    speaker = request.args.get('speaker')
    sdp_ratio = float(request.args.get('sdp_ratio', 0.2))
    noise_scale = float(request.args.get('noise_scale', 0.6))
    noise_scale_w = float(request.args.get('noise_scale_w', 0.8))
    length_scale = float(request.args.get('length_scale', 1))
    emotion = request.args.get('emotion', 'happy')
    text = request.args.get('text')
    status = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale,sid = speaker, reference_audio=None, emotion=emotion)
    with open('temp.wav','rb') as bit:
        wav_bytes = bit.read()
    
    headers = {
            'Content-Type': 'audio/wav',
            'Text': status.encode('utf-8')}
    return wav_bytes, 200, headers


if __name__ == "__main__":
    languages = [ "Auto", "ZH", "JP"]
    modelPaths = []
    for dirpath, dirnames, filenames in os.walk("Data/BangDreamV22/models/"):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    hps = utils.get_hparams_from_file('Data/BangDreamV22/configs/config.json')
    net_g = get_net_g(
        model_path=modelPaths[-1], device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    app.run(host="0.0.0.0", port=5000)