Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import time | |
from io import BytesIO | |
import uuid | |
from dataclasses import dataclass | |
from glob import iglob | |
import argparse | |
from einops import rearrange | |
from fire import Fire | |
from PIL import ExifTags, Image | |
import spaces | |
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
import numpy as np | |
from transformers import pipeline | |
from flux.sampling import denoise, get_schedule, prepare, unpack | |
from flux.util import (configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5) | |
from huggingface_hub import login | |
login(token=os.getenv('Token')) | |
import torch | |
class SamplingOptions: | |
source_prompt: str | |
target_prompt: str | |
# prompt: str | |
width: int | |
height: int | |
num_steps: int | |
guidance: float | |
seed: int | None | |
def encode(init_image, torch_device): | |
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1 | |
init_image = init_image.unsqueeze(0) | |
init_image = init_image.to(torch_device) | |
with torch.no_grad(): | |
init_image = ae.encode(init_image.to()).to(torch.bfloat16) | |
return init_image | |
torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
offload = False | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
name = 'flux-dev' | |
ae = load_ae(name, device="cpu" if offload else torch_device) | |
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512) | |
clip = load_clip(device) | |
model = load_flow_model(name, device="cpu" if offload else torch_device) | |
is_schnell = False | |
output_dir = 'result' | |
add_sampling_metadata = True | |
def edit(init_image, source_prompt, target_prompt, editing_strategy, num_steps, inject_step, guidance): | |
global ae, t5, clip, model, name, is_schnell, output_dir, add_sampling_metadata, offload | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch.cuda.empty_cache() | |
seed = None | |
pil_img = Image.fromarray(init_image) | |
width, height = pil_img.size | |
if max(width, height) > 1024: | |
if height > width: | |
new_height = 1024 | |
new_width = int((new_height / height) * width) | |
else: | |
new_width = 1024 | |
new_height = int((new_width / width) * height) | |
pil_img = pil_img.resize((new_width, new_height)) | |
init_image = np.array(pil_img) | |
print('[INFO] resize large image to [1024, X].') | |
shape = init_image.shape | |
new_h = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16 | |
new_w = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16 | |
init_image = init_image[:new_h, :new_w, :] | |
width, height = init_image.shape[0], init_image.shape[1] | |
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1 | |
init_image = init_image.unsqueeze(0) | |
init_image = init_image.to(device) | |
if offload: | |
model.cpu() | |
torch.cuda.empty_cache() | |
ae.encoder.to(device) | |
with torch.no_grad(): | |
init_image = ae.encode(init_image.to()).to(torch.bfloat16) | |
rng = torch.Generator(device="cpu") | |
opts = SamplingOptions( | |
source_prompt=source_prompt, | |
target_prompt=target_prompt, | |
width=width, | |
height=height, | |
num_steps=num_steps, | |
guidance=guidance, | |
seed=None, | |
) | |
if opts.seed is None: | |
opts.seed = torch.Generator(device="cpu").seed() | |
if offload: | |
ae = ae.cpu() | |
torch.cuda.empty_cache() | |
t5, clip = t5.to(torch_device), clip.to(torch_device) | |
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}") | |
t0 = time.perf_counter() | |
opts.seed = None | |
#############inverse####################### | |
info = {} | |
info['feature'] = {} | |
info['inject_step'] = min(inject_step, num_steps) | |
info['reuse_v']= False | |
info['editing_strategy']= " ".join(editing_strategy) | |
info['start_layer_index'] = 0 | |
info['end_layer_index'] = 37 | |
qkv_ratio = '1.0,1.0,1.0' | |
info['qkv_ratio'] = list(map(float, qkv_ratio.split(','))) | |
with torch.no_grad(): | |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt) | |
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt) | |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) | |
if offload: | |
t5, clip = t5.cpu(), clip.cpu() | |
torch.cuda.empty_cache() | |
model = model.to(torch_device) | |
# inversion initial noise | |
with torch.no_grad(): | |
z, info = denoise(model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info) | |
inp_target["img"] = z | |
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(name != "flux-schnell")) | |
# denoise initial noise | |
x, _ = denoise(model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info) | |
# decode latents to pixel space | |
x = unpack(x.float(), opts.width, opts.height) | |
output_name = os.path.join(output_dir, "img_{idx}.jpg") | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
idx = 0 | |
else: | |
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)] | |
if len(fns) > 0: | |
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 | |
else: | |
idx = 0 | |
if offload: | |
model.cpu() | |
torch.cuda.empty_cache() | |
ae.decoder.to(x.device) | |
device = torch.device("cuda") | |
with torch.autocast(device_type=device.type, dtype=torch.bfloat16): | |
x = ae.decode(x) | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
t1 = time.perf_counter() | |
fn = output_name.format(idx=idx) | |
print(f"Done in {t1 - t0:.1f}s. Saving {fn}") | |
# bring into PIL format and save | |
x = x.clamp(-1, 1) | |
x = embed_watermark(x.float()) | |
x = rearrange(x[0], "c h w -> h w c") | |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | |
exif_data = Image.Exif() | |
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" | |
exif_data[ExifTags.Base.Make] = "Black Forest Labs" | |
exif_data[ExifTags.Base.Model] = name | |
if add_sampling_metadata: | |
exif_data[ExifTags.Base.ImageDescription] = source_prompt | |
# img.save(fn, exif=exif_data, quality=95, subsampling=0) | |
print("End Edit") | |
return img | |
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu"): | |
is_schnell = model_name == "flux-schnell" | |
title = r""" | |
<h1 align="center">🔥FireFlow: Fast Inversion of Rectified Flow for Image Semantic Editing</h1> | |
""" | |
description = r""" | |
<h3>Tips 🔔:</h3> | |
<ol> | |
<li>We automatically resize images larger than 1024x1024 by scaling the longer edge to 1024 to prevent out-of-memory errors. Larger image is 🆗.</li> | |
<li>If the results are not satisfactory, consider slightly increasing the total number of timesteps 📈. </li> | |
<li>Each editing technique produces distinct effects, so feel free to experiment and explore their possibilities 🎨 !. </li> | |
</ol> | |
""" | |
article = r""" | |
If you find our work helpful, we would greatly appreciate it if you could ⭐ our <a href='https://github.com/HolmesShuan/FireFlow-Fast-Inversion-of-Rectified-Flow-for-Image-Semantic-Editing' target='_blank'>GitHub repository</a>. Thank you for your support! | |
""" | |
css = ''' | |
.gradio-container {width: 85% !important} | |
''' | |
# Pre-defined examples | |
examples = [ | |
["example_images/dog.jpg", "Photograph of a dog on the grass", "Photograph of a cat on the grass", ['replace_v'], 8, 1, 2.0], | |
["example_images/gold.jpg", "3d melting gold render", "a cat in the style of 3d melting gold render", ['replace_v'], 8, 1, 2.0], | |
["example_images/gold.jpg", "3d melting gold render", "a cat in the style of 3d melting gold render", ['replace_v'], 10, 1, 2.0], | |
["example_images/art.jpg", "", "a vivid depiction of the Batman, featuring rich, dynamic colors, and a blend of realistic and abstract elements with dynamic splatter art.", ['add_q'], 8, 1, 2.0], | |
] | |
with gr.Blocks(css=css) as demo: | |
# Add a title, description, and additional information | |
gr.HTML(title) | |
gr.Markdown(description) | |
gr.Markdown(article) | |
# Layout: Two columns | |
with gr.Row(): | |
# Left Column: Inputs | |
with gr.Column(): | |
init_image = gr.Image(label="Input Image", visible=True) | |
source_prompt = gr.Textbox(label="Source Prompt", value="", placeholder="(Optional) Describe the content of the uploaded image.") | |
target_prompt = gr.Textbox(label="Target Prompt", value="", placeholder="(Required) Describe the desired content of the edited image.") | |
# CheckboxGroup for editing strategies | |
editing_strategy = gr.CheckboxGroup( | |
label="Editing Technique", | |
choices=['replace_v', 'add_q', 'add_k'], | |
value=['replace_v'], # Default: none selected | |
interactive=True | |
) | |
generate_btn = gr.Button("Generate") | |
# Right Column: Advanced options and output | |
with gr.Column(): | |
with gr.Accordion("Advanced Options", open=True): | |
num_steps = gr.Slider( | |
minimum=1, | |
maximum=30, | |
value=8, | |
step=1, | |
label="Total timesteps" | |
) | |
inject_step = gr.Slider( | |
minimum=1, | |
maximum=15, | |
value=1, | |
step=1, | |
label="Feature sharing steps" | |
) | |
guidance = gr.Slider( | |
minimum=1.0, | |
maximum=8.0, | |
value=2.0, | |
step=0.1, | |
label="Guidance", | |
interactive=not is_schnell | |
) | |
# Output display | |
output_image = gr.Image(label="Generated Image") | |
# Button click event to trigger the edit function | |
generate_btn.click( | |
fn=edit, | |
inputs=[ | |
init_image, | |
source_prompt, | |
target_prompt, | |
editing_strategy, # Include the selected editing strategies | |
num_steps, | |
inject_step, | |
guidance | |
], | |
outputs=[output_image] | |
) | |
# Add examples | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
init_image, | |
source_prompt, | |
target_prompt, | |
editing_strategy, | |
num_steps, | |
inject_step, | |
guidance | |
], | |
outputs=[output_image], | |
fn=edit, | |
cache_mode='lazy', | |
cache_examples=True # Enable caching | |
) | |
return demo | |
demo = create_demo("flux-dev", "cuda") | |
demo.launch() |