MWAI-Interior-Design / pipelines.py
BertChristiaens's picture
refactor
dd0ab9f
raw
history blame
3.67 kB
import logging
from typing import List, Tuple, Dict
import streamlit as st
import torch
import gc
import time
import numpy as np
from PIL import Image
from time import perf_counter
from contextlib import contextmanager
from scipy.signal import fftconvolve
from PIL import ImageFilter
from diffusers import ControlNetModel, UniPCMultistepScheduler
from diffusers import StableDiffusionInpaintPipeline
from config import WIDTH, HEIGHT
from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline
from helpers import flush
LOGGING = logging.getLogger(__name__)
class ControlNetPipeline:
def __init__(self):
self.in_use = False
self.controlnet = ControlNetModel.from_pretrained(
"BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16)
self.pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
controlnet=self.controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe = self.pipe.to("cuda")
self.waiting_queue = []
self.count = 0
@property
def queue_size(self):
return len(self.waiting_queue)
def __call__(self, **kwargs):
self.count += 1
number = self.count
self.waiting_queue.append(number)
# wait until the next number in the queue is the current number
while self.waiting_queue[0] != number:
print(f"Wait for your turn {number} in queue {self.waiting_queue}")
time.sleep(0.5)
pass
# it's your turn, so remove the number from the queue
# and call the function
print("It's the turn of", self.count)
results = self.pipe(**kwargs)
self.waiting_queue.pop(0)
flush()
return results
class SDPipeline:
def __init__(self):
self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
safety_checker=None,
)
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe = self.pipe.to("cuda")
self.waiting_queue = []
self.count = 0
@property
def queue_size(self):
return len(self.waiting_queue)
def __call__(self, **kwargs):
self.count += 1
number = self.count
self.waiting_queue.append(number)
# wait until the next number in the queue is the current number
while self.waiting_queue[0] != number:
print(f"Wait for your turn {number} in queue {self.waiting_queue}")
time.sleep(0.5)
pass
# it's your turn, so remove the number from the queue
# and call the function
print("It's the turn of", self.count)
results = self.pipe(**kwargs)
self.waiting_queue.pop(0)
flush()
return results
@st.experimental_singleton(max_entries=5)
def get_controlnet():
"""Method to load the controlnet model
Returns:
ControlNetModel: controlnet model
"""
pipe = ControlNetPipeline()
return pipe
@st.experimental_singleton(max_entries=5)
def get_inpainting_pipeline():
"""Method to load the inpainting pipeline
Returns:
StableDiffusionInpaintPipeline: inpainting pipeline
"""
pipe = SDPipeline()
return pipe