Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,27 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
|
4 |
# Load model and tokenizer
|
5 |
-
model_name = "gpt2
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
16 |
-
|
17 |
-
outputs = model.generate(
|
18 |
-
inputs.input_ids,
|
19 |
-
max_length=max_length,
|
20 |
-
num_return_sequences=1,
|
21 |
-
no_repeat_ngram_size=2,
|
22 |
-
top_k=50,
|
23 |
-
top_p=0.95,
|
24 |
-
temperature=0.7,
|
25 |
-
)
|
26 |
-
|
27 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
-
return generated_text.replace(prompt, "")
|
29 |
-
|
30 |
-
# Function to classify blog post
|
31 |
-
def classify_blog_post(text, labels):
|
32 |
-
result = classifier(text, labels)
|
33 |
-
return result
|
34 |
|
35 |
# Streamlit interface
|
36 |
st.title("Blog Post Generator")
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
if
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
st.
|
47 |
-
st.text_area("Blog Content", blog_post, height=300)
|
48 |
-
|
49 |
-
# Classify the generated blog post
|
50 |
-
st.subheader("Blog Post Classification")
|
51 |
-
labels = ["Technology", "Travel", "Food", "Health", "Finance"]
|
52 |
-
classification = classify_blog_post(blog_post, labels)
|
53 |
-
|
54 |
-
for label, score in zip(classification['labels'], classification['scores']):
|
55 |
-
st.write(f"{label}: {score:.2f}")
|
56 |
-
|
57 |
-
st.sidebar.title("About")
|
58 |
-
st.sidebar.info(
|
59 |
-
"This app generates a blog post on a given topic using a large GPT model. "
|
60 |
-
"It also classifies the generated post using zero-shot classification."
|
61 |
-
)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Load model and tokenizer
|
5 |
+
model_name = "gpt2" # You can also try other models like "gpt2-medium", "gpt2-large", etc.
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
+
def generate_blog_post(topic):
|
10 |
+
prompt = f"Write a detailed blog post about {topic}."
|
11 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
12 |
+
outputs = model.generate(inputs, max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
|
13 |
+
blog_post = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
+
return blog_post
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Streamlit interface
|
17 |
st.title("Blog Post Generator")
|
18 |
+
st.write("Enter a topic to generate a detailed blog post.")
|
19 |
+
|
20 |
+
topic = st.text_input("Topic", "")
|
21 |
+
if st.button("Generate Blog Post"):
|
22 |
+
if topic:
|
23 |
+
with st.spinner('Generating blog post...'):
|
24 |
+
blog_post = generate_blog_post(topic)
|
25 |
+
st.write(blog_post)
|
26 |
+
else:
|
27 |
+
st.write("Please enter a topic to generate a blog post.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|