Porjaz's picture
Upload 4 files
df08a7c verified
raw
history blame
11.8 kB
import os
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import gc
from functools import partial
import gradio as gr
import torch
from speechbrain.inference.interfaces import Pretrained, foreign_class
from transformers import T5Tokenizer, T5ForConditionalGeneration
import librosa
import whisper_timestamped as whisper
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cuda.matmul.allow_tf32 = True
def clean_up_memory():
gc.collect()
torch.cuda.empty_cache()
def recap_sentence(string):
# Restore capitalization and punctuation using the model
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0)
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
return recap_result
def return_prediction_w2v2(mic=None, file=None, device=device):
if mic is not None:
waveform, sr = librosa.load(mic, sr=16000)
waveform = waveform[:30*sr]
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
elif file is not None:
waveform, sr = librosa.load(file, sr=16000)
waveform = waveform[:30*sr]
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
else:
return "You must either provide a mic recording or a file"
recap_result = recap_sentence(w2v2_result[0])
# If the letter after punct is small, recap it
for i, letter in enumerate(recap_result):
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
clean_up_memory()
return recap_result
def return_prediction_whisper(mic=None, file=None, device=device):
if mic is not None:
waveform, sr = librosa.load(mic, sr=16000)
waveform = waveform[:30*sr]
whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
elif file is not None:
waveform, sr = librosa.load(file, sr=16000)
waveform = waveform[:30*sr]
whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
else:
return "You must either provide a mic recording or a file"
recap_result = recap_sentence(whisper_result[0])
# If the letter after punct is small, recap it
for i, letter in enumerate(recap_result):
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
clean_up_memory()
return recap_result
def return_prediction_compare(mic=None, file=None, device=device):
# pipe_whisper.model.to(device)
# mms_model.to(device)
if mic is not None:
waveform, sr = librosa.load(mic, sr=16000)
waveform = waveform[:30*sr]
whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
# result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(mic, device)
whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
mms_result_generator = whisper_classifier.classify_file_mms(waveform, processor_mms, mms_model, device)
elif file is not None:
waveform, sr = librosa.load(file, sr=16000)
waveform = waveform[:30*sr]
whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
# result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(file, device)
whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
mms_result_generator = whisper_classifier.classify_file_mms(waveform, processor_mms, mms_model, device)
else:
return "You must either provide a mic recording or a file"
# pipe_whisper.model.to("cpu")
# mms_model.to("cpu")
segment_results_whisper = ""
prev_segment_whisper = ""
# segment_results_w2v2 = ""
# prev_segment_w2v2 = ""
segment_results_mms = ""
prev_segment_mms = ""
recap_result_whisper_mkd = recap_sentence(whisper_mkd_result[0])
recap_result_whisper = recap_sentence(whisper_result[0])
recap_result_mms = recap_sentence(mms_result_generator[0])
# If the letter after punct is small, recap it
for i, letter in enumerate(recap_result_whisper_mkd):
if i > 1 and recap_result_whisper_mkd[i-2] in [".", "!", "?"] and letter.islower():
recap_result_whisper_mkd = recap_result_whisper_mkd[:i] + letter.upper() + recap_result_whisper_mkd[i+1:]
for i, letter in enumerate(recap_result_whisper):
if i > 1 and recap_result_whisper[i-2] in [".", "!", "?"] and letter.islower():
recap_result_whisper = recap_result_whisper[:i] + letter.upper() + recap_result_whisper[i+1:]
for i, letter in enumerate(recap_result_mms):
if i > 1 and recap_result_mms[i-2] in [".", "!", "?"] and letter.islower():
recap_result_mms = recap_result_mms[:i] + letter.upper() + recap_result_mms[i+1:]
clean_up_memory()
return "Буки-Whisper:\n" + recap_result_whisper_mkd + "\n\n" + "MMS:\n" + recap_result_mms + "\n\n" + "OpenAI Whisper:\n" + recap_result_whisper
# yield "Our W2v2: \n" + segment_results_w2v2 + "\n\n" + "MMS transcript:\n" + segment_results_mms
# Load Whisper model
model_id = "openai/whisper-large-v3"
whisper_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
whisper_model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_whisper = pipeline(
"automatic-speech-recognition",
model=whisper_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch.float16,
return_timestamps=True,
device=device,
)
# Load MMS model
model_id = "facebook/mms-1b-all"
processor_mms = AutoProcessor.from_pretrained(model_id)
mms_model = Wav2Vec2ForCTC.from_pretrained(model_id)
mms_model = mms_model.to(device)
mms_model.eval()
processor_mms.tokenizer.set_target_lang("mkd")
mms_model.load_adapter("mkd")
# Create a partial function with the device pre-applied
return_prediction_whisper_with_device = partial(return_prediction_whisper, device=device)
return_prediction_w2v2_with_device = partial(return_prediction_w2v2, device=device)
return_prediction_with_device_compare = partial(return_prediction_compare, device=device)
# Load the ASR models
w2v2_classifier = foreign_class(source="Macedonian-ASR/wav2vec2-aed-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
w2v2_classifier = w2v2_classifier.to(device)
w2v2_classifier.eval()
whisper_classifier = foreign_class(source="Macedonian-ASR/whisper-large-v3-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
whisper_classifier = whisper_classifier.to(device)
whisper_classifier.eval()
# Load the T5 tokenizer and model for restoring capitalization
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian"
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name)
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16)
recap_model.to(device)
recap_model.eval()
mic_transcribe_whisper = gr.Interface(
fn=return_prediction_whisper_with_device,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Textbox(),
allow_flagging="never",
live=False,
)
# file_transcribe_whisper = gr.Interface(
# fn=return_prediction_whisper_with_device,
# inputs=gr.Audio(sources="upload", type="filepath"),
# outputs=gr.Textbox(),
# allow_flagging="never",
# live=False
# )
mic_transcribe_w2v2 = gr.Interface(
fn=return_prediction_w2v2_with_device,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Textbox(),
allow_flagging="never",
live=False,
)
# file_transcribe_w2v2 = gr.Interface(
# fn=return_prediction_w2v2_with_device,
# inputs=gr.Audio(sources="upload", type="filepath"),
# outputs=gr.Textbox(),
# allow_flagging="never",
# live=False
# )
mic_transcribe_compare = gr.Interface(
fn=return_prediction_with_device_compare,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Textbox(),
allow_flagging="never",
live=False,
)
# file_transcribe_compare = gr.Interface(
# fn=return_prediction_with_device_compare,
# inputs=gr.Audio(sources="upload", type="filepath"),
# outputs=gr.Textbox(),
# allow_flagging="never",
# live=False
# )
project_description = '''
## Автори:
1. **Дејан Порјазовски**
2. **Илина Јакимовска**
3. **Ордан Чукалиев**
4. **Никола Стиков**
Оваа колаборација е дел од активностите на **Центарот за напредни интердисциплинарни истражувања ([ЦеНИИс](https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis))** при УКИМ.
## Во тренирањето на овој модел се употребени податоци од:
1. Дигитален архив за етнолошки и антрополошки ресурси (ДАЕАР) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
2. Аудио верзија на меѓународното списание „ЕтноАнтропоЗум“ на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
3. Аудио подкастот „Обични луѓе“ на Илина Јакимовска
4. Научните видеа од серијалот „Наука за деца“, фондација КАНТАРОТ
5. Македонска верзија на Mozilla Common Voice (верзија 18.0)
'''
# Custom CSS
css = """
.gradio-container {
background-color: #f0f0f0; /* Set your desired background color */
}
.custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a {
font-size: 15px !important;
font-family: Arial, sans-serif !important;
}
.gradio-container {
background-color: #f3f3f3 !important;
}
"""
transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120))
with transcriber_app:
state = gr.State()
gr.Markdown(project_description, elem_classes="custom-markdown")
# gr.TabbedInterface(
# [mic_transcribe_whisper, mic_transcribe_compare],
# ["Буки-Whisper транскрипција", "Споредба на модели"],
# )
# state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED"))
gr.TabbedInterface(
[mic_transcribe_whisper, mic_transcribe_w2v2, mic_transcribe_compare],
["Буки-Whisper транскрипција", "Буки-W2v2 транскрипција", "Споредба на модели"],
)
state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED"))
transcriber_app.unload(return_prediction_whisper)
transcriber_app.unload(return_prediction_compare)
transcriber_app.unload(return_prediction_w2v2)
# transcriber_app.launch(debug=True, share=True, ssl_verify=False)
if __name__ == "__main__":
transcriber_app.queue()
transcriber_app.launch(share=True)