File size: 11,309 Bytes
df08a7c d72e622 df08a7c f1f7156 df08a7c 93b87db df08a7c 93b87db df08a7c b40f25a 47c8873 df08a7c f1f7156 df08a7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import gc
from functools import partial
import gradio as gr
import torch
from speechbrain.inference.interfaces import Pretrained, foreign_class
from transformers import T5Tokenizer, T5ForConditionalGeneration
import librosa
import whisper_timestamped as whisper
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cuda.matmul.allow_tf32 = True
def clean_up_memory():
gc.collect()
torch.cuda.empty_cache()
def recap_sentence(string):
# Restore capitalization and punctuation using the model
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0)
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
return recap_result
def return_prediction_w2v2(mic=None, file=None, device=device):
if mic is not None:
waveform, sr = librosa.load(mic, sr=16000)
waveform = waveform[:30*sr]
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
elif file is not None:
waveform, sr = librosa.load(file, sr=16000)
waveform = waveform[:30*sr]
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
else:
return "You must either provide a mic recording or a file"
recap_result = recap_sentence(w2v2_result[0])
# If the letter after punct is small, recap it
for i, letter in enumerate(recap_result):
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
clean_up_memory()
return recap_result
def return_prediction_whisper(mic=None, file=None, device=device):
if mic is not None:
waveform, sr = librosa.load(mic, sr=16000)
waveform = waveform[:30*sr]
whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
elif file is not None:
waveform, sr = librosa.load(file, sr=16000)
waveform = waveform[:30*sr]
whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
else:
return "You must either provide a mic recording or a file"
recap_result = recap_sentence(whisper_result[0])
# If the letter after punct is small, recap it
for i, letter in enumerate(recap_result):
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
clean_up_memory()
return recap_result
def return_prediction_compare(mic=None, file=None, device=device):
# pipe_whisper.model.to(device)
# mms_model.to(device)
if mic is not None:
waveform, sr = librosa.load(mic, sr=16000)
waveform = waveform[:30*sr]
whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
# result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(mic, device)
whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
mms_result_generator = whisper_classifier.classify_file_mms(waveform, processor_mms, mms_model, device)
elif file is not None:
waveform, sr = librosa.load(file, sr=16000)
waveform = waveform[:30*sr]
whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
# result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(file, device)
whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
mms_result_generator = whisper_classifier.classify_file_mms(waveform, processor_mms, mms_model, device)
else:
return "You must either provide a mic recording or a file"
# pipe_whisper.model.to("cpu")
# mms_model.to("cpu")
segment_results_whisper = ""
prev_segment_whisper = ""
# segment_results_w2v2 = ""
# prev_segment_w2v2 = ""
segment_results_mms = ""
prev_segment_mms = ""
recap_result_whisper_mkd = recap_sentence(whisper_mkd_result[0])
recap_result_whisper = recap_sentence(whisper_result[0])
recap_result_mms = recap_sentence(mms_result_generator[0])
# If the letter after punct is small, recap it
for i, letter in enumerate(recap_result_whisper_mkd):
if i > 1 and recap_result_whisper_mkd[i-2] in [".", "!", "?"] and letter.islower():
recap_result_whisper_mkd = recap_result_whisper_mkd[:i] + letter.upper() + recap_result_whisper_mkd[i+1:]
for i, letter in enumerate(recap_result_whisper):
if i > 1 and recap_result_whisper[i-2] in [".", "!", "?"] and letter.islower():
recap_result_whisper = recap_result_whisper[:i] + letter.upper() + recap_result_whisper[i+1:]
for i, letter in enumerate(recap_result_mms):
if i > 1 and recap_result_mms[i-2] in [".", "!", "?"] and letter.islower():
recap_result_mms = recap_result_mms[:i] + letter.upper() + recap_result_mms[i+1:]
clean_up_memory()
return "Буки-Whisper:\n" + recap_result_whisper_mkd + "\n\n" + "MMS:\n" + recap_result_mms + "\n\n" + "OpenAI Whisper:\n" + recap_result_whisper
# yield "Our W2v2: \n" + segment_results_w2v2 + "\n\n" + "MMS transcript:\n" + segment_results_mms
# Load Whisper model
model_id = "openai/whisper-large-v3"
whisper_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
whisper_model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_whisper = pipeline(
"automatic-speech-recognition",
model=whisper_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch.float16,
return_timestamps=True,
device=device,
)
# Load MMS model
model_id = "facebook/mms-1b-all"
processor_mms = AutoProcessor.from_pretrained(model_id)
mms_model = Wav2Vec2ForCTC.from_pretrained(model_id)
mms_model = mms_model.to(device)
mms_model.eval()
processor_mms.tokenizer.set_target_lang("mkd")
mms_model.load_adapter("mkd")
# Create a partial function with the device pre-applied
return_prediction_whisper_with_device = partial(return_prediction_whisper, device=device)
# return_prediction_w2v2_with_device = partial(return_prediction_w2v2, device=device)
return_prediction_with_device_compare = partial(return_prediction_compare, device=device)
# Load the ASR models
whisper_classifier = foreign_class(source="Macedonian-ASR/whisper-large-v3-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
whisper_classifier = whisper_classifier.to(device)
whisper_classifier.eval()
# Load the T5 tokenizer and model for restoring capitalization
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian"
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name)
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16)
recap_model.to(device)
recap_model.eval()
mic_transcribe_compare = gr.Interface(
fn=return_prediction_with_device_compare,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Textbox(),
allow_flagging="never",
live=False,
)
# file_transcribe_compare = gr.Interface(
# fn=return_prediction_with_device_compare,
# inputs=gr.Audio(sources="upload", type="filepath"),
# outputs=gr.Textbox(),
# allow_flagging="never",
# live=False
# )
project_description = '''
## Автори:
1. **Дејан Порјазовски**
2. **Илина Јакимовска**
3. **Ордан Чукалиев**
4. **Никола Стиков**
Оваа колаборација е дел од активностите на **Центарот за напредни интердисциплинарни истражувања ([ЦеНИИс](https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis))** при УКИМ.
## Во тренирањето на овој модел се употребени податоци од:
1. Дигитален архив за етнолошки и антрополошки ресурси ([ДАЕАР](https://iea.pmf.ukim.edu.mk/tabs/view/61f236ed7d95176b747c20566ddbda1a)) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
2. Аудио верзија на меѓународното списание [„ЕтноАнтропоЗум“](https://etno.pmf.ukim.mk/index.php/eaz/issue/archive) на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
3. Аудио подкастот [„Обични луѓе“](https://obicniluge.mk/episodes/) на Илина Јакимовска
4. Научните видеа од серијалот [„Наука за деца“](http://naukazadeca.mk), фондација [КАНТАРОТ](https://qantarot.substack.com/)
5. Македонска верзија на [Mozilla Common Voice](https://commonvoice.mozilla.org/en/datasets) (верзија 18.0)
## Како да придонесете за подобрување на македонските модели за препознавање на говор?
На следниот [линк](https://drive.google.com/file/d/18sXbX8OABlMS5uYXfC4y9qlI6YZIJ1fQ/view?usp=sharing) ќе најдете инструкции за тоа како да донирате македонски говор преку платформата Mozilla Common Voice.
'''
# Custom CSS
css = """
.gradio-container {
background-color: #f0f0f0; /* Set your desired background color */
}
.custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a {
font-size: 15px !important;
font-family: Arial, sans-serif !important;
}
.gradio-container {
background-color: #f3f3f3 !important;
}
"""
transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120))
with transcriber_app:
state = gr.State()
gr.Markdown(project_description, elem_classes="custom-markdown")
# gr.TabbedInterface(
# [mic_transcribe_whisper, mic_transcribe_compare],
# ["Буки-Whisper транскрипција", "Споредба на модели"],
# )
# state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED"))
gr.TabbedInterface(
[mic_transcribe_compare],
["Споредба на модели"],
)
state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED"))
transcriber_app.unload(return_prediction_whisper)
transcriber_app.unload(return_prediction_compare)
transcriber_app.unload(return_prediction_w2v2)
# transcriber_app.launch(debug=True, share=True, ssl_verify=False)
if __name__ == "__main__":
transcriber_app.queue()
transcriber_app.launch(share=True) |