Spaces:
Sleeping
Sleeping
MSaadTariq
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,48 @@ from PIL import Image
|
|
7 |
import io
|
8 |
import torch
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load the YOLO model
|
11 |
@st.cache_resource
|
12 |
def load_model():
|
13 |
-
model = YOLO("mosaic_medium_100_tiny_object.pt")
|
14 |
-
model.to('cpu')
|
15 |
return model
|
16 |
|
17 |
model = load_model()
|
@@ -44,18 +81,52 @@ def process_image(image):
|
|
44 |
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
45 |
|
46 |
def main():
|
47 |
-
st.title("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
result_image = process_image(image)
|
58 |
-
st.image(result_image, caption="Processed Image", use_column_width=True)
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
main()
|
|
|
7 |
import io
|
8 |
import torch
|
9 |
|
10 |
+
# Set page config
|
11 |
+
st.set_page_config(page_title="Building Detection App", page_icon="π’", layout="wide")
|
12 |
+
|
13 |
+
# Custom CSS
|
14 |
+
st.markdown("""
|
15 |
+
<style>
|
16 |
+
.reportview-container {
|
17 |
+
background: #f0f2f6
|
18 |
+
}
|
19 |
+
.main {
|
20 |
+
background-color: #ffffff;
|
21 |
+
padding: 2rem;
|
22 |
+
border-radius: 10px;
|
23 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
24 |
+
}
|
25 |
+
.stButton>button {
|
26 |
+
background-color: #4CAF50;
|
27 |
+
color: white;
|
28 |
+
font-weight: bold;
|
29 |
+
border: none;
|
30 |
+
border-radius: 5px;
|
31 |
+
padding: 0.5rem 1rem;
|
32 |
+
transition: all 0.3s;
|
33 |
+
}
|
34 |
+
.stButton>button:hover {
|
35 |
+
background-color: #45a049;
|
36 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
37 |
+
}
|
38 |
+
.upload-box {
|
39 |
+
border: 2px dashed #4CAF50;
|
40 |
+
border-radius: 10px;
|
41 |
+
padding: 2rem;
|
42 |
+
text-align: center;
|
43 |
+
}
|
44 |
+
</style>
|
45 |
+
""", unsafe_allow_html=True)
|
46 |
+
|
47 |
# Load the YOLO model
|
48 |
@st.cache_resource
|
49 |
def load_model():
|
50 |
+
model = YOLO("mosaic_medium_100_tiny_object.pt") # Update this to the filename of your model
|
51 |
+
model.to('cpu') # Ensure the model is on CPU
|
52 |
return model
|
53 |
|
54 |
model = load_model()
|
|
|
81 |
return cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
82 |
|
83 |
def main():
|
84 |
+
st.title("π’ Building Detection App")
|
85 |
+
st.markdown("Upload an image to detect buildings using our advanced AI model.")
|
86 |
+
|
87 |
+
col1, col2 = st.columns(2)
|
88 |
+
|
89 |
+
with col1:
|
90 |
+
st.markdown("### Upload Image")
|
91 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
92 |
+
|
93 |
+
if uploaded_file is not None:
|
94 |
+
image = Image.open(uploaded_file)
|
95 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
96 |
+
|
97 |
+
if st.button("π Detect Buildings"):
|
98 |
+
with st.spinner("Processing..."):
|
99 |
+
result_image = process_image(image)
|
100 |
+
with col2:
|
101 |
+
st.markdown("### Detection Results")
|
102 |
+
st.image(result_image, caption="Processed Image", use_column_width=True)
|
103 |
+
st.success("Detection completed successfully!")
|
104 |
+
else:
|
105 |
+
st.markdown(
|
106 |
+
"""
|
107 |
+
<div class="upload-box">
|
108 |
+
<h3>π Upload an image to get started</h3>
|
109 |
+
<p>Supported formats: JPG, JPEG, PNG</p>
|
110 |
+
</div>
|
111 |
+
""",
|
112 |
+
unsafe_allow_html=True
|
113 |
+
)
|
114 |
|
115 |
+
with col2:
|
116 |
+
if uploaded_file is None:
|
117 |
+
st.markdown("### How it works")
|
118 |
+
st.markdown(
|
119 |
+
"""
|
120 |
+
1. **Upload** an image using the file uploader on the left.
|
121 |
+
2. Click the **Detect Buildings** button to process the image.
|
122 |
+
3. View the results with bounding boxes around detected buildings.
|
123 |
|
124 |
+
Our AI model is trained to identify various types of buildings from satellite images.
|
125 |
+
"""
|
126 |
+
)
|
127 |
|
128 |
+
st.markdown("---")
|
129 |
+
st.markdown("Developed with β€οΈ using Streamlit and YOLOv8")
|
|
|
|
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
main()
|