Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -57,14 +57,17 @@ def analyze_sterilization(data):
|
|
57 |
is_nutabreizh = 'NutaBreizh' in product
|
58 |
required_temp = 108 if is_nutabreizh else 103
|
59 |
|
60 |
-
#
|
61 |
-
|
|
|
|
|
|
|
62 |
|
63 |
# Calculate max temperatures
|
64 |
max_temp_sterilisateur = group['Temp. du stérilisateur'].max()
|
65 |
max_temp_coeur = group['Temp. à coeur'].max()
|
66 |
|
67 |
-
# Determine if criteria met
|
68 |
criteria_met = minutes_at_temp >= 30
|
69 |
|
70 |
results.append({
|
@@ -97,6 +100,16 @@ def main():
|
|
97 |
st.subheader("Résultats de l'analyse")
|
98 |
st.dataframe(results_df)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# Create visualization
|
101 |
if not results_df.empty:
|
102 |
fig = px.scatter(results_df,
|
|
|
57 |
is_nutabreizh = 'NutaBreizh' in product
|
58 |
required_temp = 108 if is_nutabreizh else 103
|
59 |
|
60 |
+
# Filter rows where core temperature is above or equal to the required temperature
|
61 |
+
above_required_temp = group[group['Temp. à coeur'] >= required_temp]
|
62 |
+
|
63 |
+
# Calculate the duration (in minutes) at the required temperature
|
64 |
+
minutes_at_temp = len(above_required_temp)
|
65 |
|
66 |
# Calculate max temperatures
|
67 |
max_temp_sterilisateur = group['Temp. du stérilisateur'].max()
|
68 |
max_temp_coeur = group['Temp. à coeur'].max()
|
69 |
|
70 |
+
# Determine if criteria met (at least 30 minutes at required temperature)
|
71 |
criteria_met = minutes_at_temp >= 30
|
72 |
|
73 |
results.append({
|
|
|
100 |
st.subheader("Résultats de l'analyse")
|
101 |
st.dataframe(results_df)
|
102 |
|
103 |
+
# Check if all criteria are met
|
104 |
+
if not results_df['Criteres_Respectes'].all():
|
105 |
+
st.warning("Attention : Certains produits n'ont pas respecté les critères de stérilisation.")
|
106 |
+
|
107 |
+
# Display failed products
|
108 |
+
failed_products = results_df[results_df['Criteres_Respectes'] == False]
|
109 |
+
if not failed_products.empty:
|
110 |
+
st.subheader("Produits n'ayant pas respecté les critères")
|
111 |
+
st.dataframe(failed_products)
|
112 |
+
|
113 |
# Create visualization
|
114 |
if not results_df.empty:
|
115 |
fig = px.scatter(results_df,
|