AtsuMiyai commited on
Commit
8145d10
·
1 Parent(s): 9c5be01

update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -3
app.py CHANGED
@@ -35,6 +35,14 @@ def upload_file(files):
35
  return file_paths
36
 
37
 
 
 
 
 
 
 
 
 
38
  # Accuracy Report
39
  def report_acc(df, groupd='category', metric_type="dual"):
40
  assert 'split' in df
@@ -90,7 +98,7 @@ def eval_result_dual(data_main, metric_type="dual"):
90
 
91
 
92
  def calculate_score(input_file):
93
- dual_df = pd.DataFrame(input_file)
94
  overall_dual, leaf_dual = eval_result_dual(dual_df)
95
  overall_standard, leaf_standard = eval_result_dual(dual_df, metric_type="standard")
96
  overall_upd, leaf_upd = eval_result_dual(dual_df, metric_type="upd")
@@ -100,7 +108,7 @@ def calculate_score(input_file):
100
 
101
  # add the new data into the queue
102
  def add_queue(base_df, input_file, model_name):
103
- dual_df = pd.DataFrame(input_file)
104
  base_df[f"{model_name}_prediction_standard"] = dual_df["prediction_standard"]
105
  base_df[f"{model_name}_hit_standard"] = dual_df["hit_standard"]
106
  base_df[f"{model_name}_prediction_upd"] = dual_df["prediction_upd"]
@@ -112,7 +120,7 @@ def add_queue(base_df, input_file, model_name):
112
  # check whether the input file is correct or not
113
  def validity_check(input_file, UPD_type, question_type):
114
 
115
- input_df = pd.DataFrame(input_file)
116
 
117
  # check for the correct data size
118
  data_num_dict = {"AAD": 820, "IASD": 919, "IVQD": 356}
 
35
  return file_paths
36
 
37
 
38
+ def create_df(input_file):
39
+ bytes_data = input_file.value
40
+ json_string = bytes_data.decode('utf-8')
41
+ data = json.loads(json_string)
42
+ df = pd.DataFrame(data)
43
+
44
+ return df
45
+
46
  # Accuracy Report
47
  def report_acc(df, groupd='category', metric_type="dual"):
48
  assert 'split' in df
 
98
 
99
 
100
  def calculate_score(input_file):
101
+ dual_df = create_df(input_file)
102
  overall_dual, leaf_dual = eval_result_dual(dual_df)
103
  overall_standard, leaf_standard = eval_result_dual(dual_df, metric_type="standard")
104
  overall_upd, leaf_upd = eval_result_dual(dual_df, metric_type="upd")
 
108
 
109
  # add the new data into the queue
110
  def add_queue(base_df, input_file, model_name):
111
+ dual_df = create_df(input_file)
112
  base_df[f"{model_name}_prediction_standard"] = dual_df["prediction_standard"]
113
  base_df[f"{model_name}_hit_standard"] = dual_df["hit_standard"]
114
  base_df[f"{model_name}_prediction_upd"] = dual_df["prediction_upd"]
 
120
  # check whether the input file is correct or not
121
  def validity_check(input_file, UPD_type, question_type):
122
 
123
+ input_df = create_df(input_file)
124
 
125
  # check for the correct data size
126
  data_num_dict = {"AAD": 820, "IASD": 919, "IVQD": 356}