Spaces:
Sleeping
Sleeping
umairahmad1789
commited on
Update scalingtestupdated.py
Browse files- scalingtestupdated.py +180 -167
scalingtestupdated.py
CHANGED
@@ -1,167 +1,180 @@
|
|
1 |
-
import cv2
|
2 |
-
import numpy as np
|
3 |
-
import os
|
4 |
-
import argparse
|
5 |
-
from typing import Union
|
6 |
-
from matplotlib import pyplot as plt
|
7 |
-
|
8 |
-
|
9 |
-
class ScalingSquareDetector:
|
10 |
-
def __init__(self, feature_detector="ORB", debug=False):
|
11 |
-
"""
|
12 |
-
Initialize the detector with the desired feature matching algorithm.
|
13 |
-
:param feature_detector: "ORB" or "SIFT" (default is "ORB").
|
14 |
-
:param debug: If True, saves intermediate images for debugging.
|
15 |
-
"""
|
16 |
-
self.feature_detector = feature_detector
|
17 |
-
self.debug = debug
|
18 |
-
self.detector = self._initialize_detector()
|
19 |
-
|
20 |
-
def _initialize_detector(self):
|
21 |
-
"""
|
22 |
-
Initialize the chosen feature detector.
|
23 |
-
:return: OpenCV detector object.
|
24 |
-
"""
|
25 |
-
if self.feature_detector.upper() == "SIFT":
|
26 |
-
return cv2.SIFT_create()
|
27 |
-
elif self.feature_detector.upper() == "ORB":
|
28 |
-
return cv2.ORB_create()
|
29 |
-
else:
|
30 |
-
raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.")
|
31 |
-
|
32 |
-
def find_scaling_square(
|
33 |
-
self, reference_image_path, target_image, known_size_mm, roi_margin=30
|
34 |
-
):
|
35 |
-
"""
|
36 |
-
Detect the scaling square in the target image based on the reference image.
|
37 |
-
:param reference_image_path: Path to the reference image of the square.
|
38 |
-
:param target_image_path: Path to the target image containing the square.
|
39 |
-
:param known_size_mm: Physical size of the square in millimeters.
|
40 |
-
:param roi_margin: Margin to expand the ROI around the detected square (in pixels).
|
41 |
-
:return: Scaling factor (mm per pixel).
|
42 |
-
"""
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
square_width_px
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
from typing import Union
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
|
8 |
+
|
9 |
+
class ScalingSquareDetector:
|
10 |
+
def __init__(self, feature_detector="ORB", debug=False):
|
11 |
+
"""
|
12 |
+
Initialize the detector with the desired feature matching algorithm.
|
13 |
+
:param feature_detector: "ORB" or "SIFT" (default is "ORB").
|
14 |
+
:param debug: If True, saves intermediate images for debugging.
|
15 |
+
"""
|
16 |
+
self.feature_detector = feature_detector
|
17 |
+
self.debug = debug
|
18 |
+
self.detector = self._initialize_detector()
|
19 |
+
|
20 |
+
def _initialize_detector(self):
|
21 |
+
"""
|
22 |
+
Initialize the chosen feature detector.
|
23 |
+
:return: OpenCV detector object.
|
24 |
+
"""
|
25 |
+
if self.feature_detector.upper() == "SIFT":
|
26 |
+
return cv2.SIFT_create()
|
27 |
+
elif self.feature_detector.upper() == "ORB":
|
28 |
+
return cv2.ORB_create()
|
29 |
+
else:
|
30 |
+
raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.")
|
31 |
+
|
32 |
+
def find_scaling_square(
|
33 |
+
self, reference_image_path, target_image, known_size_mm, roi_margin=30
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Detect the scaling square in the target image based on the reference image.
|
37 |
+
:param reference_image_path: Path to the reference image of the square.
|
38 |
+
:param target_image_path: Path to the target image containing the square.
|
39 |
+
:param known_size_mm: Physical size of the square in millimeters.
|
40 |
+
:param roi_margin: Margin to expand the ROI around the detected square (in pixels).
|
41 |
+
:return: Scaling factor (mm per pixel).
|
42 |
+
"""
|
43 |
+
|
44 |
+
contours, _ = cv2.findContours(
|
45 |
+
target_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
46 |
+
)
|
47 |
+
|
48 |
+
if not contours:
|
49 |
+
raise ValueError("No contours found in the cropped ROI.")
|
50 |
+
|
51 |
+
# # Select the largest square-like contour
|
52 |
+
largest_square = None
|
53 |
+
largest_square_area = 0
|
54 |
+
for contour in contours:
|
55 |
+
x_c, y_c, w_c, h_c = cv2.boundingRect(contour)
|
56 |
+
aspect_ratio = w_c / float(h_c)
|
57 |
+
if 0.9 <= aspect_ratio <= 1.1:
|
58 |
+
peri = cv2.arcLength(contour, True)
|
59 |
+
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
|
60 |
+
if len(approx) == 4:
|
61 |
+
area = cv2.contourArea(contour)
|
62 |
+
if area > largest_square_area:
|
63 |
+
largest_square = contour
|
64 |
+
largest_square_area = area
|
65 |
+
|
66 |
+
# if largest_square is None:
|
67 |
+
# raise ValueError("No square-like contour found in the ROI.")
|
68 |
+
|
69 |
+
# Draw the largest contour on the original image
|
70 |
+
target_image_color = cv2.cvtColor(target_image, cv2.COLOR_GRAY2BGR)
|
71 |
+
cv2.drawContours(
|
72 |
+
target_image_color, largest_square, -1, (255, 0, 0), 3
|
73 |
+
)
|
74 |
+
|
75 |
+
# if self.debug:
|
76 |
+
cv2.imwrite("largest_contour.jpg", target_image_color)
|
77 |
+
|
78 |
+
# Calculate the bounding rectangle of the largest contour
|
79 |
+
x, y, w, h = cv2.boundingRect(largest_square)
|
80 |
+
square_width_px = w
|
81 |
+
square_height_px = h
|
82 |
+
|
83 |
+
# Calculate the scaling factor
|
84 |
+
avg_square_size_px = (square_width_px + square_height_px) / 2
|
85 |
+
scaling_factor = 0.5 / avg_square_size_px # mm per pixel
|
86 |
+
|
87 |
+
return scaling_factor #, square_height_px, square_width_px, roi_binary
|
88 |
+
|
89 |
+
def draw_debug_images(self, output_folder):
|
90 |
+
"""
|
91 |
+
Save debug images if enabled.
|
92 |
+
:param output_folder: Directory to save debug images.
|
93 |
+
"""
|
94 |
+
if self.debug:
|
95 |
+
if not os.path.exists(output_folder):
|
96 |
+
os.makedirs(output_folder)
|
97 |
+
debug_images = ["largest_contour.jpg"]
|
98 |
+
for img_name in debug_images:
|
99 |
+
if os.path.exists(img_name):
|
100 |
+
os.rename(img_name, os.path.join(output_folder, img_name))
|
101 |
+
|
102 |
+
|
103 |
+
def calculate_scaling_factor(
|
104 |
+
reference_image_path,
|
105 |
+
target_image,
|
106 |
+
known_square_size_mm=12.7,
|
107 |
+
feature_detector="ORB",
|
108 |
+
debug=False,
|
109 |
+
roi_margin=30,
|
110 |
+
):
|
111 |
+
# Initialize detector
|
112 |
+
detector = ScalingSquareDetector(feature_detector=feature_detector, debug=debug)
|
113 |
+
|
114 |
+
# Find scaling square and calculate scaling factor
|
115 |
+
scaling_factor = detector.find_scaling_square(
|
116 |
+
reference_image_path=reference_image_path,
|
117 |
+
target_image=target_image,
|
118 |
+
known_size_mm=known_square_size_mm,
|
119 |
+
roi_margin=roi_margin,
|
120 |
+
)
|
121 |
+
|
122 |
+
# Save debug images
|
123 |
+
if debug:
|
124 |
+
detector.draw_debug_images("debug_outputs")
|
125 |
+
|
126 |
+
return scaling_factor
|
127 |
+
|
128 |
+
|
129 |
+
# Example usage:
|
130 |
+
if __name__ == "__main__":
|
131 |
+
import os
|
132 |
+
from PIL import Image
|
133 |
+
from ultralytics import YOLO
|
134 |
+
from app import yolo_detect, shrink_bbox
|
135 |
+
from ultralytics.utils.plotting import save_one_box
|
136 |
+
|
137 |
+
for idx, file in enumerate(os.listdir("./sample_images")):
|
138 |
+
img = np.array(Image.open(os.path.join("./sample_images", file)))
|
139 |
+
img = yolo_detect(img, ['box'])
|
140 |
+
model = YOLO("./last.pt")
|
141 |
+
res = model.predict(img, conf=0.6)
|
142 |
+
|
143 |
+
box_img = save_one_box(res[0].cpu().boxes.xyxy, im=res[0].orig_img, save=False)
|
144 |
+
# img = shrink_bbox(box_img, 1.20)
|
145 |
+
cv2.imwrite(f"./outputs/{idx}_{file}", box_img)
|
146 |
+
|
147 |
+
print("File: ",f"./outputs/{idx}_{file}")
|
148 |
+
try:
|
149 |
+
|
150 |
+
scaling_factor = calculate_scaling_factor(
|
151 |
+
reference_image_path="./Reference_ScalingBox.jpg",
|
152 |
+
target_image=box_img,
|
153 |
+
known_square_size_mm=12.7,
|
154 |
+
feature_detector="ORB",
|
155 |
+
debug=False,
|
156 |
+
roi_margin=90,
|
157 |
+
)
|
158 |
+
# cv2.imwrite(f"./outputs/{idx}_binary_{file}", roi_binary)
|
159 |
+
|
160 |
+
# Square size in mm
|
161 |
+
# square_size_mm = 12.7
|
162 |
+
|
163 |
+
# # Compute the calculated scaling factors and compare
|
164 |
+
# calculated_scaling_factor = square_size_mm / height_px
|
165 |
+
# discrepancy = abs(calculated_scaling_factor - scaling_factor)
|
166 |
+
# import pprint
|
167 |
+
# pprint.pprint({
|
168 |
+
# "height_px": height_px,
|
169 |
+
# "width_px": width_px,
|
170 |
+
# "given_scaling_factor": scaling_factor,
|
171 |
+
# "calculated_scaling_factor": calculated_scaling_factor,
|
172 |
+
# "discrepancy": discrepancy,
|
173 |
+
# })
|
174 |
+
|
175 |
+
|
176 |
+
print(f"Scaling Factor (mm per pixel): {scaling_factor:.6f}")
|
177 |
+
except Exception as e:
|
178 |
+
from traceback import print_exc
|
179 |
+
print(print_exc())
|
180 |
+
print(f"Error: {e}")
|