detect-contours / app.py
umairahmad1789's picture
Update app.py
8ca529b verified
raw
history blame
13.2 kB
import os
from pathlib import Path
from typing import List, Union
from PIL import Image
import ezdxf.units
import numpy as np
import torch
from torchvision import transforms
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
import cv2
import ezdxf
import gradio as gr
import gc
from scalingtestupdated import calculate_scaling_factor
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True
)
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet.to(device)
birefnet.eval()
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def yolo_detect(
image: Union[str, Path, int, Image.Image, list, tuple, np.ndarray, torch.Tensor],
classes: List[str],
) -> np.ndarray:
drawer_detector = YOLOWorld("yolov8x-worldv2.pt")
drawer_detector.set_classes(classes)
results: List[Results] = drawer_detector.predict(image)
boxes = []
for result in results:
boxes.append(
save_one_box(result.cpu().boxes.xyxy, im=result.orig_img, save=False)
)
del drawer_detector
return boxes[0]
def remove_bg(image: np.ndarray) -> np.ndarray:
image = Image.fromarray(image)
input_images = transform_image(image).unsqueeze(0).to("cpu")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Show Results
pred_pil: Image = transforms.ToPILImage()(pred)
print(pred_pil)
# Scale proportionally with max length to 1024 for faster showing
scale_ratio = 1024 / max(image.size)
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
return np.array(pred_pil.resize(scaled_size))
def make_square(img: np.ndarray):
# Get dimensions
height, width = img.shape[:2]
# Find the larger dimension
max_dim = max(height, width)
# Calculate padding
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
# Handle odd dimensions
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
# Create padding with edge colors
if len(img.shape) == 3: # Color image
# Pad the image
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0),
),
mode="edge",
)
else: # Grayscale image
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
),
mode="edge",
)
return padded
def exclude_scaling_box(
image: np.ndarray,
bbox: np.ndarray,
orig_size: tuple,
processed_size: tuple,
expansion_factor: float = 1.5,
) -> np.ndarray:
# Unpack the bounding box
x_min, y_min, x_max, y_max = map(int, bbox)
# Calculate scaling factors
scale_x = processed_size[1] / orig_size[1] # Width scale
scale_y = processed_size[0] / orig_size[0] # Height scale
# Adjust bounding box coordinates
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
# Calculate expanded box coordinates
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(
image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
)
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(
image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
)
# Black out the expanded region
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
def resample_contour(contour):
# ---------------------------------------------------------------------------------------- #
# Get all the parameters at the start:
num_points = 1000
smoothing_factor = 5
smoothed_x_sigma = 1
smoothed_y_sigma = 1
# ---------------------------------------------------------------------------------------- #
contour = contour[:, 0, :]
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
u = np.linspace(0, 1, num_points)
resampled_points = splev(u, tck)
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma)
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma)
return np.array([smoothed_x, smoothed_y]).T
def save_dxf_spline(inflated_contours, scaling_factor, height):
# ---------------------------------------------------------------------------------------- #
# Get all the parameters at the start:
degree = 3
closed = True
# ---------------------------------------------------------------------------------------- #
doc = ezdxf.new(units=0)
doc.units = ezdxf.units.IN
doc.header['$INSUNITS'] = ezdxf.units.IN
msp = doc.modelspace()
for contour in inflated_contours:
resampled_contour = resample_contour(contour)
points = [
(x * scaling_factor, (height - y)* scaling_factor)
for x, y in resampled_contour
]
if len(points) >= 3:
# Manually Closing the Contour in case it hasn't been closed by the contours before.
if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2:
points.append(points[0])
spline = msp.add_spline(points, degree=degree)
spline.closed = closed
# Step 14: Save the DXF file
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
return dxf_filepath
def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
"""
Extracts and draws the outlines of masks from a binary image.
Args:
binary_image: Grayscale binary image where white represents masks and black is the background.
Returns:
Image with outlines drawn.
"""
# Detect contours from the binary image
contours, _ = cv2.findContours(
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
# smooth_contours_list = []
# for contour in contours:
# smooth_contours_list.append(smooth_contours(contour))
# Create a blank image to draw contours
outline_image = np.zeros_like(binary_image)
# Draw the contours on the blank image
cv2.drawContours(
outline_image, contours, -1, (255), thickness=1
) # White color for outlines
return cv2.bitwise_not(outline_image), contours
def shrink_bbox(image: np.ndarray, shrink_factor: float):
"""
Crops the central 80% of the image, maintaining proportions for non-square images.
Args:
image: Input image as a NumPy array.
Returns:
Cropped image as a NumPy array.
"""
height, width = image.shape[:2]
center_x, center_y = width // 2, height // 2
# Calculate 80% dimensions
new_width = int(width * shrink_factor)
new_height = int(height * shrink_factor)
# Determine the top-left and bottom-right points for cropping
x1 = max(center_x - new_width // 2, 0)
y1 = max(center_y - new_height // 2, 0)
x2 = min(center_x + new_width // 2, width)
y2 = min(center_y + new_height // 2, height)
# Crop the image
cropped_image = image[y1:y2, x1:x2]
return cropped_image
# def to_dxf(outlines):
# upper_range_tuple = (200)
# lower_range_tuple = (0)
# doc = ezdxf.new('R2010')
# msp = doc.modelspace()
# masked_jpg = cv2.inRange(outlines,lower_range_tuple, upper_range_tuple)
# for i in range(0,masked_jpg.shape[0]):
# for j in range(0,masked_jpg.shape[1]):
# if masked_jpg[i][j] == 255:
# msp.add_line((j,masked_jpg.shape[0] - i), (j,masked_jpg.shape[0] - i))
# doc.saveas("./outputs/out.dxf")
# return "./outputs/out.dxf"
def to_dxf(contours):
doc = ezdxf.new()
msp = doc.modelspace()
for contour in contours:
points = [(point[0][0], point[0][1]) for point in contour]
msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
doc.saveas("./outputs/out.dxf")
return "./outputs/out.dxf"
def smooth_contours(contour):
epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
return cv2.approxPolyDP(contour, epsilon, True)
def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray:
"""
Resize image by scaling both width and height by the same factor.
Args:
image: Input numpy image
scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size)
Returns:
np.ndarray: Resized image
"""
if scale_factor <= 0:
raise ValueError("Scale factor must be positive")
current_height, current_width = image.shape[:2]
# Calculate new dimensions
new_width = int(current_width * scale_factor)
new_height = int(current_height * scale_factor)
# Choose interpolation method based on whether we're scaling up or down
interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC
# Resize image
resized_image = cv2.resize(
image, (new_width, new_height), interpolation=interpolation
)
return resized_image
def detect_reference_square(img) -> np.ndarray:
box_detector = YOLO("./last.pt")
res = box_detector.predict(img)
del box_detector
return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[
0
].cpu().boxes.xyxy[0]
def resize_img(img: np.ndarray, resize_dim):
return np.array(Image.fromarray(img).resize(resize_dim))
def predict(image, offset_inches):
drawer_img = yolo_detect(image, ["box"])
shrunked_img = make_square(shrink_bbox(drawer_img, 0.8))
# Detect the scaling reference square
reference_obj_img, scaling_box_coords = detect_reference_square(shrunked_img)
# reference_obj_img_scaled = shrink_bbox(reference_obj_img, 1.2)
# make the image sqaure so it does not effect the size of objects
reference_obj_img = make_square(reference_obj_img)
reference_square_mask = remove_bg(reference_obj_img)
# make the mask same size as org image
reference_square_mask = resize_img(
reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0])
)
try:
scaling_factor = calculate_scaling_factor(
reference_image_path="./Reference_ScalingBox.jpg",
target_image=reference_square_mask,
feature_detector="ORB",
)
except:
scaling_factor = 1.0
# Save original size before `remove_bg` processing
orig_size = shrunked_img.shape[:2]
# Generate foreground mask and save its size
objects_mask = remove_bg(shrunked_img)
processed_size = objects_mask.shape[:2]
# Exclude scaling box region from objects mask
objects_mask = exclude_scaling_box(
objects_mask,
scaling_box_coords,
orig_size,
processed_size,
expansion_factor=3.0,
)
objects_mask = resize_img(
objects_mask, (shrunked_img.shape[1], shrunked_img.shape[0])
)
offset_pixels = offset_inches / scaling_factor
dilated_mask = cv2.dilate(
objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
)
# Scale the object mask according to scaling factor
# objects_mask_scaled = scale_image(objects_mask, scaling_factor)
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
outlines, contours = extract_outlines(dilated_mask)
dxf = save_dxf_spline(contours, scaling_factor, processed_size[0])
return outlines, dxf, dilated_mask, scaling_factor, reference_obj_img
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
ifer = gr.Interface(
fn=predict,
inputs=[gr.Image(label="Input Image"), gr.Number(label="Offset value for Mask(inches)", value=0.075)],
outputs=[
gr.Image(label="Ouput Image"),
gr.File(label="DXF file"),
gr.Image(label="Mask"),
gr.Textbox(
label="Scaling Factor(mm)",
placeholder="Every pixel is equal to mentioned number in mm(milimeter)",
),
gr.Image(label="Image used for calculating scaling factor"),
],
examples=[
["./examples/Test20.jpg", 0.075],
["./examples/Test21.jpg", 0.075],
["./examples/Test22.jpg", 0.075],
["./examples/Test23.jpg", 0.075],
],
)
ifer.launch(share=True)