umairahmad89 commited on
Commit
2cd5935
·
0 Parent(s):

initial commit

Browse files
Files changed (6) hide show
  1. .gitignore +18 -0
  2. app.py +65 -0
  3. data.yaml +6 -0
  4. split.py +7 -0
  5. train.py +6 -0
  6. val.py +6 -0
.gitignore ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .DS_Store
2
+ flagged
3
+ images
4
+ labels
5
+ labels-prev
6
+ project*
7
+ test*
8
+ val
9
+ yolo-labels
10
+ ahmad.pt
11
+ annotations.csv
12
+ convert.py
13
+ plot.py
14
+ README.md
15
+ LICENSE
16
+ *.zip
17
+ tf*
18
+ weights/*
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+ from ultralytics import YOLO
3
+ from ultralytics.engine.results import Boxes
4
+ from ultralytics.utils.plotting import Annotator
5
+
6
+ import gradio as gr
7
+
8
+ cell_detector = YOLO("./weights/yolo_uninfected_cells.pt")
9
+ redetr_detector = YOLO("./weights/redetr_infected_cells.pt")
10
+ yolo_detector = YOLO("./weights/yolo_infected_cells.pt")
11
+
12
+ models = {"Yolo V11": yolo_detector, "Real Time Detection Transformer": redetr_detector}
13
+ classes = {"Yolo V11": [0], "Real Time Detection Transformer": [1]}
14
+
15
+
16
+ def inference(image, model) -> Tuple[str, str, str]:
17
+ bboxes = []
18
+ labels = []
19
+ healthy_cell_count = 0
20
+ unhealthy_cell_count = 0
21
+ cells_results = cell_detector.predict(image, conf=0.5)
22
+ selected_model_results = models[model].predict(
23
+ image, conf=0.05, classes=classes[model], imgsz=1024
24
+ )
25
+
26
+ for cell_result in cells_results:
27
+ boxes: Boxes = cell_result.boxes
28
+ healthy_cells_bboxes = boxes.xyxy.tolist()
29
+ healthy_cell_count += len(healthy_cells_bboxes)
30
+ bboxes.extend(healthy_cells_bboxes)
31
+ labels.extend(["healthy"] * healthy_cell_count)
32
+
33
+ for res in selected_model_results:
34
+ boxes: Boxes = res.boxes
35
+ unhealthy_cells_bboxes = boxes.xyxy.tolist()
36
+ unhealthy_cell_count += len(unhealthy_cells_bboxes)
37
+ bboxes.extend(unhealthy_cells_bboxes)
38
+ labels.extend(["unhealthy"] * unhealthy_cell_count)
39
+
40
+ annotator = Annotator(image, font_size=5, line_width=1)
41
+
42
+ for box, label in zip(bboxes, labels):
43
+ annotator.box_label(box, label)
44
+
45
+ img = annotator.result()
46
+ return (img, healthy_cell_count, unhealthy_cell_count)
47
+
48
+
49
+ ifer = gr.Interface(
50
+ fn=inference,
51
+ inputs=[
52
+ gr.Image(label="Input Image", type="numpy"),
53
+ gr.Dropdown(
54
+ choices=["Yolo V11", "Real Time Detection Transformer"], multiselect=False
55
+ ),
56
+ ],
57
+ outputs=[
58
+ gr.Image(label="Output Image", type="numpy"),
59
+ gr.Textbox(label="Healthy Cells Count"),
60
+ gr.Textbox(label="Infected Cells Count"),
61
+ ],
62
+ title="Blood Cancer Cell Detection and Counting"
63
+ )
64
+
65
+ ifer.launch(share=True)
data.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ train: ./dataset/autosplit_train.txt
2
+ val: ./dataset/autosplit_val.txt
3
+ test: ./dataset/autosplit_test.txt
4
+ nc: 1
5
+ names:
6
+ - cell
split.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from ultralytics.data.utils import autosplit
2
+
3
+ autosplit(
4
+ path="./dataset/images",
5
+ weights=(0.8, 0.1, 0.1), # (train, validation, test) fractional splits
6
+ annotated_only=False, # split only images with annotation file when True
7
+ )
train.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from ultralytics import YOLO
2
+
3
+
4
+ model = YOLO("yolov8n.pt")
5
+ model.to('cuda')
6
+ model.train(data="data.yaml", epochs=100, batch=8, device="cuda", imgsz=640)
val.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from ultralytics import YOLO
2
+
3
+
4
+ model = YOLO("best_BCCM.pt")
5
+ model.to('cuda')
6
+ model.val(data="data.yaml")