Spaces:
Running
Running
"""We can use Gradio to build the UI and then make it compatible for the Hugging face.""" | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import imutils | |
from PIL import Image | |
cv2.ocl.setUseOpenCL(False) | |
# Sharpening function | |
def image_sharpening(image): | |
kernel_sharpening = np.array([[-1, -1, -1], | |
[-1, 9, -1], | |
[-1, -1, -1]]) | |
sharpened = cv2.filter2D(image, -1, kernel_sharpening) | |
return sharpened | |
# Remove black borders function | |
def remove_black_region(result): | |
gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY) | |
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1] | |
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
cnts = imutils.grab_contours(cnts) | |
c = max(cnts, key=cv2.contourArea) | |
(x, y, w, h) = cv2.boundingRect(c) | |
crop = result[y:y + h, x:x + w] | |
return crop | |
# Key point detection and descriptor function | |
def detectAndDescribe(image, method='orb'): | |
if method == 'sift': | |
descriptor = cv2.SIFT_create() | |
elif method == 'brisk': | |
descriptor = cv2.BRISK_create() | |
elif method == 'orb': | |
descriptor = cv2.ORB_create() | |
(kps, features) = descriptor.detectAndCompute(image, None) | |
return kps, features | |
# Matcher creation | |
def createMatcher(method, crossCheck): | |
if method in ['sift', 'surf']: | |
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=crossCheck) | |
else: | |
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=crossCheck) | |
return bf | |
# Matching key points | |
def matchKeyPointsKNN(featuresA, featuresB, ratio, method): | |
bf = createMatcher(method, crossCheck=False) | |
rawMatches = bf.knnMatch(featuresA, featuresB, 2) | |
matches = [] | |
for m, n in rawMatches: | |
if m.distance < n.distance * ratio: | |
matches.append(m) | |
return matches | |
# Homography calculation | |
def getHomography(kpsA, kpsB, featuresA, featuresB, matches, reprojThresh=4.0): | |
kpsA = np.float32([kp.pt for kp in kpsA]) | |
kpsB = np.float32([kp.pt for kp in kpsB]) | |
if len(matches) > 4: | |
ptsA = np.float32([kpsA[m.queryIdx] for m in matches]) | |
ptsB = np.float32([kpsB[m.trainIdx] for m in matches]) | |
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh) | |
return matches, H, status | |
else: | |
return None | |
# Stitching function for two images | |
def stitch_two_images(queryImg, trainImg, feature_extractor): | |
queryImg_gray = cv2.cvtColor(queryImg, cv2.COLOR_BGR2GRAY) | |
trainImg_gray = cv2.cvtColor(trainImg, cv2.COLOR_BGR2GRAY) | |
kpsA, featuresA = detectAndDescribe(trainImg_gray, method=feature_extractor) | |
kpsB, featuresB = detectAndDescribe(queryImg_gray, method=feature_extractor) | |
matches = matchKeyPointsKNN(featuresA, featuresB, ratio=0.75, method=feature_extractor) | |
M = getHomography(kpsA, kpsB, featuresA, featuresB, matches, reprojThresh=5) | |
if M is None: | |
return None | |
(matches, H, status) = M | |
width = trainImg.shape[1] + queryImg.shape[1] | |
height = trainImg.shape[0] + queryImg.shape[0] | |
result = cv2.warpPerspective(trainImg, H, (width, height)) | |
result[0:queryImg.shape[0], 0:queryImg.shape[1]] = queryImg | |
crop_image = remove_black_region(result) | |
return crop_image | |
# Calculate target brightness | |
def calculate_target_brightness(images): | |
brightness_values = [np.mean(image.astype(np.float32)) for image in images] | |
return np.mean(brightness_values) | |
# Brightness adjustment | |
def global_brightness_adjustment(images, target_brightness): | |
adjusted_images = [] | |
for image in images: | |
image_float = image.astype(np.float32) | |
avg_brightness = np.mean(image_float) | |
brightness_shift = target_brightness - avg_brightness | |
adjusted_image = image_float + brightness_shift | |
adjusted_image = np.clip(adjusted_image, 0, 255).astype(np.uint8) | |
adjusted_images.append(adjusted_image) | |
return adjusted_images | |
# Main Stitching function | |
def stitch_images(uploaded_files, feature_extractor): | |
images = [cv2.cvtColor(np.array(Image.open(file)), cv2.COLOR_RGB2BGR) for file in uploaded_files] | |
if len(images) == 0: | |
return None | |
# feature_extractor = 'orb' | |
target_brightness = calculate_target_brightness(images) | |
adjusted_images = global_brightness_adjustment(images, target_brightness) | |
stitched_image = adjusted_images[0] | |
for i in range(1, len(adjusted_images)): | |
queryImg = stitched_image | |
trainImg = adjusted_images[i] | |
stitched_image = stitch_two_images(queryImg, trainImg, feature_extractor) | |
return cv2.cvtColor(stitched_image, cv2.COLOR_BGR2RGB) | |
# Gradio interface with feature extractor selector | |
with gr.Blocks() as demo: | |
gr.Markdown("## Image Stitching App with Feature Extractor Selection") | |
image_input = gr.Files(label="Upload Images", type="filepath") | |
extractor_input = gr.Dropdown(choices=["orb", "sift", "brisk"], label="Feature Extractor", value="orb") | |
image_output = gr.Image(type="numpy", label="Stitched Image") | |
process_button = gr.Button("Process Image") | |
process_button.click(stitch_images, inputs=[image_input, extractor_input], outputs=image_output) | |
# Launch the Gradio app | |
demo.launch() | |