mlbench123's picture
Update app.py
8164f36 verified
import os
from pathlib import Path
from typing import List, Union
from PIL import Image
import ezdxf.units
import numpy as np
import torch
from torchvision import transforms
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
import cv2
import ezdxf
import gradio as gr
import gc
from scalingtestupdated import calculate_scaling_factor
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
import json
birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True
)
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet.to(device)
birefnet.eval()
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def remove_bg(image: np.ndarray) -> np.ndarray:
image = Image.fromarray(image)
input_images = transform_image(image).unsqueeze(0).to("cpu")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Show Results
pred_pil: Image = transforms.ToPILImage()(pred)
print(pred_pil)
# Scale proportionally with max length to 1024 for faster showing
scale_ratio = 1024 / max(image.size)
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
print(f"scaled size {scaled_size}")
return np.array(pred_pil.resize(scaled_size))
def make_square(img: np.ndarray):
# Get dimensions
height, width = img.shape[:2]
# Find the larger dimension
max_dim = max(height, width)
# Calculate padding
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
# Handle odd dimensions
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
# Create padding with edge colors
if len(img.shape) == 3: # Color image
# Pad the image
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0),
),
mode="edge",
)
else: # Grayscale image
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
),
mode="edge",
)
return padded
def exclude_scaling_box(
image: np.ndarray,
bbox: np.ndarray,
orig_size: tuple,
processed_size: tuple,
expansion_factor: float = 1.2,
) -> np.ndarray:
# Unpack the bounding box
x_min, y_min, x_max, y_max = map(int, bbox)
# Calculate scaling factors
scale_x = processed_size[1] / orig_size[1] # Width scale
scale_y = processed_size[0] / orig_size[0] # Height scale
# Adjust bounding box coordinates
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
# Calculate expanded box coordinates
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(
image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
)
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(
image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
)
# Black out the expanded region
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
def resample_contour(contour):
# Get all the parameters at the start:
num_points = 1000
smoothing_factor = 5
spline_degree = 3 # Typically k=3 for cubic spline
smoothed_x_sigma = 1
smoothed_y_sigma = 1
# Ensure contour has enough points
if len(contour) < spline_degree + 1:
raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.")
contour = contour[:, 0, :]
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor)
u = np.linspace(0, 1, num_points)
resampled_points = splev(u, tck)
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma)
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma)
return np.array([smoothed_x, smoothed_y]).T
def save_dxf_spline(inflated_contours, scaling_factor, height):
degree = 3
closed = True
# Create a new DXF document with millimeters as the unit
doc = ezdxf.new(units=ezdxf.units.MM)
doc.units = ezdxf.units.MM # Ensure units are millimeters
doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters
msp = doc.modelspace()
for contour in inflated_contours:
try:
resampled_contour = resample_contour(contour)
points = [
(x * scaling_factor, (height - y) * scaling_factor)
for x, y in resampled_contour
]
if len(points) >= 3:
if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2:
points.append(points[0])
spline = msp.add_spline(points, degree=degree)
spline.closed = closed
except ValueError as e:
print(f"Skipping contour: {e}")
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
return dxf_filepath
def extract_outlines(binary_image: np.ndarray) -> np.ndarray:
"""
Extracts and draws the outlines of masks from a binary image.
Args:
binary_image: Grayscale binary image where white represents masks and black is the background.
Returns:
Image with outlines drawn.
"""
# Detect contours from the binary image
contours, _ = cv2.findContours(
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
outline_image = np.zeros_like(binary_image)
# Draw the contours on the blank image
cv2.drawContours(
outline_image, contours, -1, (255), thickness=1
) # White color for outlines
return cv2.bitwise_not(outline_image), contours
def to_dxf(contours):
# Create a new DXF document with millimeters as the unit
doc = ezdxf.new(units=ezdxf.units.MM)
doc.units = ezdxf.units.MM # Ensure units are millimeters
doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters)
msp = doc.modelspace()
try:
for contour in contours:
points = [(point[0][0], point[0][1]) for point in contour]
msp.add_lwpolyline(points, close=True) # Add a polyline for each contour
except Exception as e:
raise gr.Error(f"Unable to generate DXF: {e}")
output_path = "./outputs/out.dxf"
doc.saveas(output_path)
return output_path
def smooth_contours(contour):
epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01)
return cv2.approxPolyDP(contour, epsilon, True)
def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray:
"""
Resize image by scaling both width and height by the same factor.
Args:
image: Input numpy image
scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size)
Returns:
np.ndarray: Resized image
"""
if scale_factor <= 0:
raise ValueError("Scale factor must be positive")
current_height, current_width = image.shape[:2]
# Calculate new dimensions
new_width = int(current_width * scale_factor)
new_height = int(current_height * scale_factor)
# Choose interpolation method based on whether we're scaling up or down
interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC
# Resize image
resized_image = cv2.resize(
image, (new_width, new_height), interpolation=interpolation
)
return resized_image
def detect_reference_square(img) -> np.ndarray:
box_detector = YOLO("./best1.pt")
res = box_detector.predict(img, conf=0.05)
del box_detector
return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[
0
].cpu().boxes.xyxy[0]
def resize_img(img: np.ndarray, resize_dim):
return np.array(Image.fromarray(img).resize(resize_dim))
def predict(image, offset, coin_size_mm):
if offset < 0:
raise gr.Error("Offset Value Can't be negative")
try:
reference_obj_img, scaling_box_coords = detect_reference_square(image)
except:
raise gr.Error("Unable to detect the COIN. Please try again with different magnification.")
reference_obj_img = make_square(reference_obj_img)
reference_square_mask = remove_bg(reference_obj_img)
reference_square_mask = resize_img(reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0]))
try:
scaling_factor= calculate_scaling_factor(
target_image=reference_square_mask,
reference_obj_size_mm = coin_size_mm,
feature_detector="ORB",
)
except Exception as e:
scaling_factor = None
print(f"Error calculating scaling factor: {e}")
# Default to a scaling factor if calculation fails
if scaling_factor is None or scaling_factor == 0:
scaling_factor = 0.07
print("Using default scaling factor due to calculation error")
orig_size = image.shape[:2]
objects_mask = remove_bg(image)
processed_size = objects_mask.shape[:2]
objects_mask = exclude_scaling_box(
objects_mask,
scaling_box_coords,
orig_size,
processed_size,
expansion_factor=1.2,
)
objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))
# Ensure offset_inches is valid
if scaling_factor != 0:
offset_pixels = (float(offset) / float(scaling_factor)) * 2 + 1
else:
offset_pixels = 1 # Default value in case of invalid scaling factor
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg")
outlines, contours = extract_outlines(dilated_mask)
shrunked_img_contours = cv2.drawContours(image, contours, -1, (0, 0, 255), thickness=2)
dxf = save_dxf_spline(contours, scaling_factor, processed_size[0])
# dxf = to_dxf(contours)
return (
shrunked_img_contours,
outlines,
dxf,
dilated_mask,
scaling_factor,
)
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
# Language selector in UI
ifer = gr.Interface(
fn=predict,
inputs=[
gr.Image(label="Input Image", type="numpy"),
gr.Number(label="Offset value for Mask(mm)", value=0.15),
gr.Number(label="Diameter of reference coin(mm). Adjust according to coin.", value=20),
],
outputs=[
gr.Image(label="Output Image"),
gr.Image(label="Outlines of Objects"),
gr.File(label="DXF file"),
gr.Image(label="Mask"),
gr.Textbox(
label="Scaling Factor(mm)",
placeholder="Every pixel is equal to mentioned number in millimeters",
),
],
examples=[
["./examples/Test20.jpg", 0.15],
["./examples/Test21.jpg", 0.15],
["./examples/Test22.jpg", 0.15],
["./examples/Test23.jpg", 0.15],
],
)
ifer.launch(share=True)