Spaces:
Running
Running
import os | |
from pathlib import Path | |
from typing import List, Union | |
from PIL import Image | |
import ezdxf.units | |
import numpy as np | |
import torch | |
from torchvision import transforms | |
from ultralytics import YOLOWorld, YOLO | |
from ultralytics.engine.results import Results | |
from ultralytics.utils.plotting import save_one_box | |
from transformers import AutoModelForImageSegmentation | |
import cv2 | |
import ezdxf | |
import gradio as gr | |
import gc | |
from scalingtestupdated import calculate_scaling_factor | |
from scipy.interpolate import splprep, splev | |
from scipy.ndimage import gaussian_filter1d | |
import json | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"zhengpeng7/BiRefNet", trust_remote_code=True | |
) | |
device = "cpu" | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
birefnet.to(device) | |
birefnet.eval() | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def remove_bg(image: np.ndarray) -> np.ndarray: | |
image = Image.fromarray(image) | |
input_images = transform_image(image).unsqueeze(0).to("cpu") | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
# Show Results | |
pred_pil: Image = transforms.ToPILImage()(pred) | |
print(pred_pil) | |
# Scale proportionally with max length to 1024 for faster showing | |
scale_ratio = 1024 / max(image.size) | |
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio)) | |
print(f"scaled size {scaled_size}") | |
return np.array(pred_pil.resize(scaled_size)) | |
def make_square(img: np.ndarray): | |
# Get dimensions | |
height, width = img.shape[:2] | |
# Find the larger dimension | |
max_dim = max(height, width) | |
# Calculate padding | |
pad_height = (max_dim - height) // 2 | |
pad_width = (max_dim - width) // 2 | |
# Handle odd dimensions | |
pad_height_extra = max_dim - height - 2 * pad_height | |
pad_width_extra = max_dim - width - 2 * pad_width | |
# Create padding with edge colors | |
if len(img.shape) == 3: # Color image | |
# Pad the image | |
padded = np.pad( | |
img, | |
( | |
(pad_height, pad_height + pad_height_extra), | |
(pad_width, pad_width + pad_width_extra), | |
(0, 0), | |
), | |
mode="edge", | |
) | |
else: # Grayscale image | |
padded = np.pad( | |
img, | |
( | |
(pad_height, pad_height + pad_height_extra), | |
(pad_width, pad_width + pad_width_extra), | |
), | |
mode="edge", | |
) | |
return padded | |
def exclude_scaling_box( | |
image: np.ndarray, | |
bbox: np.ndarray, | |
orig_size: tuple, | |
processed_size: tuple, | |
expansion_factor: float = 1.2, | |
) -> np.ndarray: | |
# Unpack the bounding box | |
x_min, y_min, x_max, y_max = map(int, bbox) | |
# Calculate scaling factors | |
scale_x = processed_size[1] / orig_size[1] # Width scale | |
scale_y = processed_size[0] / orig_size[0] # Height scale | |
# Adjust bounding box coordinates | |
x_min = int(x_min * scale_x) | |
x_max = int(x_max * scale_x) | |
y_min = int(y_min * scale_y) | |
y_max = int(y_max * scale_y) | |
# Calculate expanded box coordinates | |
box_width = x_max - x_min | |
box_height = y_max - y_min | |
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2)) | |
expanded_x_max = min( | |
image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2) | |
) | |
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2)) | |
expanded_y_max = min( | |
image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2) | |
) | |
# Black out the expanded region | |
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0 | |
return image | |
def resample_contour(contour): | |
# Get all the parameters at the start: | |
num_points = 1000 | |
smoothing_factor = 5 | |
spline_degree = 3 # Typically k=3 for cubic spline | |
smoothed_x_sigma = 1 | |
smoothed_y_sigma = 1 | |
# Ensure contour has enough points | |
if len(contour) < spline_degree + 1: | |
raise ValueError(f"Contour must have at least {spline_degree + 1} points, but has {len(contour)} points.") | |
contour = contour[:, 0, :] | |
tck, _ = splprep([contour[:, 0], contour[:, 1]], s=smoothing_factor) | |
u = np.linspace(0, 1, num_points) | |
resampled_points = splev(u, tck) | |
smoothed_x = gaussian_filter1d(resampled_points[0], sigma=smoothed_x_sigma) | |
smoothed_y = gaussian_filter1d(resampled_points[1], sigma=smoothed_y_sigma) | |
return np.array([smoothed_x, smoothed_y]).T | |
def save_dxf_spline(inflated_contours, scaling_factor, height): | |
degree = 3 | |
closed = True | |
# Create a new DXF document with millimeters as the unit | |
doc = ezdxf.new(units=ezdxf.units.MM) | |
doc.units = ezdxf.units.MM # Ensure units are millimeters | |
doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters | |
msp = doc.modelspace() | |
for contour in inflated_contours: | |
try: | |
resampled_contour = resample_contour(contour) | |
points = [ | |
(x * scaling_factor, (height - y) * scaling_factor) | |
for x, y in resampled_contour | |
] | |
if len(points) >= 3: | |
if np.linalg.norm(np.array(points[0]) - np.array(points[-1])) > 1e-2: | |
points.append(points[0]) | |
spline = msp.add_spline(points, degree=degree) | |
spline.closed = closed | |
except ValueError as e: | |
print(f"Skipping contour: {e}") | |
dxf_filepath = os.path.join("./outputs", "out.dxf") | |
doc.saveas(dxf_filepath) | |
return dxf_filepath | |
def extract_outlines(binary_image: np.ndarray) -> np.ndarray: | |
""" | |
Extracts and draws the outlines of masks from a binary image. | |
Args: | |
binary_image: Grayscale binary image where white represents masks and black is the background. | |
Returns: | |
Image with outlines drawn. | |
""" | |
# Detect contours from the binary image | |
contours, _ = cv2.findContours( | |
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE | |
) | |
outline_image = np.zeros_like(binary_image) | |
# Draw the contours on the blank image | |
cv2.drawContours( | |
outline_image, contours, -1, (255), thickness=1 | |
) # White color for outlines | |
return cv2.bitwise_not(outline_image), contours | |
def to_dxf(contours): | |
# Create a new DXF document with millimeters as the unit | |
doc = ezdxf.new(units=ezdxf.units.MM) | |
doc.units = ezdxf.units.MM # Ensure units are millimeters | |
doc.header["$INSUNITS"] = ezdxf.units.MM # Set insertion units to millimeters) | |
msp = doc.modelspace() | |
try: | |
for contour in contours: | |
points = [(point[0][0], point[0][1]) for point in contour] | |
msp.add_lwpolyline(points, close=True) # Add a polyline for each contour | |
except Exception as e: | |
raise gr.Error(f"Unable to generate DXF: {e}") | |
output_path = "./outputs/out.dxf" | |
doc.saveas(output_path) | |
return output_path | |
def smooth_contours(contour): | |
epsilon = 0.01 * cv2.arcLength(contour, True) # Adjust factor (e.g., 0.01) | |
return cv2.approxPolyDP(contour, epsilon, True) | |
def scale_image(image: np.ndarray, scale_factor: float) -> np.ndarray: | |
""" | |
Resize image by scaling both width and height by the same factor. | |
Args: | |
image: Input numpy image | |
scale_factor: Factor to scale the image (e.g., 0.5 for half size, 2 for double size) | |
Returns: | |
np.ndarray: Resized image | |
""" | |
if scale_factor <= 0: | |
raise ValueError("Scale factor must be positive") | |
current_height, current_width = image.shape[:2] | |
# Calculate new dimensions | |
new_width = int(current_width * scale_factor) | |
new_height = int(current_height * scale_factor) | |
# Choose interpolation method based on whether we're scaling up or down | |
interpolation = cv2.INTER_AREA if scale_factor < 1 else cv2.INTER_CUBIC | |
# Resize image | |
resized_image = cv2.resize( | |
image, (new_width, new_height), interpolation=interpolation | |
) | |
return resized_image | |
def detect_reference_square(img) -> np.ndarray: | |
box_detector = YOLO("./best1.pt") | |
res = box_detector.predict(img, conf=0.05) | |
del box_detector | |
return save_one_box(res[0].cpu().boxes.xyxy, res[0].orig_img, save=False), res[ | |
0 | |
].cpu().boxes.xyxy[0] | |
def resize_img(img: np.ndarray, resize_dim): | |
return np.array(Image.fromarray(img).resize(resize_dim)) | |
def predict(image, offset, coin_size_mm): | |
if offset < 0: | |
raise gr.Error("Offset Value Can't be negative") | |
try: | |
reference_obj_img, scaling_box_coords = detect_reference_square(image) | |
except: | |
raise gr.Error("Unable to detect the COIN. Please try again with different magnification.") | |
reference_obj_img = make_square(reference_obj_img) | |
reference_square_mask = remove_bg(reference_obj_img) | |
reference_square_mask = resize_img(reference_square_mask, (reference_obj_img.shape[1], reference_obj_img.shape[0])) | |
try: | |
scaling_factor= calculate_scaling_factor( | |
target_image=reference_square_mask, | |
reference_obj_size_mm = coin_size_mm, | |
feature_detector="ORB", | |
) | |
except Exception as e: | |
scaling_factor = None | |
print(f"Error calculating scaling factor: {e}") | |
# Default to a scaling factor if calculation fails | |
if scaling_factor is None or scaling_factor == 0: | |
scaling_factor = 0.07 | |
print("Using default scaling factor due to calculation error") | |
orig_size = image.shape[:2] | |
objects_mask = remove_bg(image) | |
processed_size = objects_mask.shape[:2] | |
objects_mask = exclude_scaling_box( | |
objects_mask, | |
scaling_box_coords, | |
orig_size, | |
processed_size, | |
expansion_factor=1.2, | |
) | |
objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0])) | |
# Ensure offset_inches is valid | |
if scaling_factor != 0: | |
offset_pixels = (float(offset) / float(scaling_factor)) * 2 + 1 | |
else: | |
offset_pixels = 1 # Default value in case of invalid scaling factor | |
dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)) | |
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_new.jpg") | |
outlines, contours = extract_outlines(dilated_mask) | |
shrunked_img_contours = cv2.drawContours(image, contours, -1, (0, 0, 255), thickness=2) | |
dxf = save_dxf_spline(contours, scaling_factor, processed_size[0]) | |
# dxf = to_dxf(contours) | |
return ( | |
shrunked_img_contours, | |
outlines, | |
dxf, | |
dilated_mask, | |
scaling_factor, | |
) | |
if __name__ == "__main__": | |
os.makedirs("./outputs", exist_ok=True) | |
# Language selector in UI | |
ifer = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Image(label="Input Image", type="numpy"), | |
gr.Number(label="Offset value for Mask(mm)", value=0.15), | |
gr.Number(label="Diameter of reference coin(mm). Adjust according to coin.", value=20), | |
], | |
outputs=[ | |
gr.Image(label="Output Image"), | |
gr.Image(label="Outlines of Objects"), | |
gr.File(label="DXF file"), | |
gr.Image(label="Mask"), | |
gr.Textbox( | |
label="Scaling Factor(mm)", | |
placeholder="Every pixel is equal to mentioned number in millimeters", | |
), | |
], | |
examples=[ | |
["./examples/Test20.jpg", 0.15], | |
["./examples/Test21.jpg", 0.15], | |
["./examples/Test22.jpg", 0.15], | |
["./examples/Test23.jpg", 0.15], | |
], | |
) | |
ifer.launch(share=True) | |