Spaces:
Running
Running
import gradio as gr | |
from ultralytics import YOLO | |
# Load the YOLO model | |
model = YOLO('best1.pt') | |
def predict(img, confidence_threshold): | |
# Perform inference | |
results = model(img) | |
# Filter predictions based on the confidence threshold | |
# The results[0].boxes.data contains the detection results, including confidence scores | |
filtered_boxes = [box for box in results[0].boxes.data if box[4] >= confidence_threshold] | |
# Plot the results (with the filtered detections) | |
annotated_frame = results[0].plot(labels=filtered_boxes) | |
return annotated_frame | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Image(label="Input Image", type="filepath"), | |
gr.Slider(minimum=0, maximum=1, value=0.5, label="Confidence Threshold", step=0.01) | |
], | |
outputs="image", | |
title="Coin Detector", | |
description="Upload an image to detect coins. Adjust the confidence threshold to filter results." | |
) | |
# Launch the Gradio interface | |
iface.launch(share=True) | |