|
"""Conditioning Augmentation Module""" |
|
|
|
from typing import Any |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
class CondAugmentation(nn.Module): |
|
"""Conditioning Augmentation Module""" |
|
|
|
def __init__(self, D: int, conditioning_dim: int): |
|
""" |
|
:param D: Dimension of the text embedding space [D from AttnGAN paper] |
|
:param conditioning_dim: Dimension of the conditioning space |
|
""" |
|
super().__init__() |
|
self.cond_dim = conditioning_dim |
|
self.cond_augment = nn.Linear(D, conditioning_dim * 4, bias=True) |
|
self.glu = nn.GLU(dim=1) |
|
|
|
def encode(self, text_embedding: torch.Tensor) -> Any: |
|
""" |
|
This function encodes the text embedding into the conditioning space |
|
:param text_embedding: Text embedding |
|
:return: Conditioning embedding |
|
""" |
|
x_tensor = self.glu(self.cond_augment(text_embedding)) |
|
mu_tensor = x_tensor[:, : self.cond_dim] |
|
logvar = x_tensor[:, self.cond_dim :] |
|
return mu_tensor, logvar |
|
|
|
def sample(self, mu_tensor: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor: |
|
""" |
|
This function samples from the Gaussian distribution |
|
:param mu: Mean of the Gaussian distribution |
|
:param logvar: Log variance of the Gaussian distribution |
|
:return: Sample from the Gaussian distribution |
|
""" |
|
std = torch.exp(0.5 * logvar) |
|
eps = torch.randn_like( |
|
std |
|
) |
|
return mu_tensor + eps * std |
|
|
|
def forward(self, text_embedding: torch.Tensor) -> Any: |
|
""" |
|
This function encodes the text embedding into the conditioning space, |
|
and samples from the Gaussian distribution. |
|
:param text_embedding: Text embedding |
|
:return c_hat: Conditioning embedding (C^ from StackGAN++ paper) |
|
:return mu: Mean of the Gaussian distribution |
|
:return logvar: Log variance of the Gaussian distribution |
|
""" |
|
mu_tensor, logvar = self.encode(text_embedding) |
|
c_hat = self.sample(mu_tensor, logvar) |
|
return c_hat, mu_tensor, logvar |
|
|