|
"""Residual Block Adopted from ManiGAN""" |
|
|
|
from typing import Any |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
"""Residual Block""" |
|
|
|
def __init__(self, channel_num: int) -> None: |
|
""" |
|
:param channel_num: Number of channels in the input |
|
""" |
|
super().__init__() |
|
self.block = nn.Sequential( |
|
nn.Conv2d( |
|
channel_num, |
|
channel_num * 2, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
), |
|
nn.InstanceNorm2d(channel_num * 2), |
|
nn.GLU(dim=1), |
|
nn.Conv2d( |
|
channel_num, channel_num, kernel_size=3, stride=1, padding=1, bias=False |
|
), |
|
nn.InstanceNorm2d(channel_num), |
|
) |
|
|
|
def forward(self, input_tensor: torch.Tensor) -> Any: |
|
""" |
|
:param input_tensor: Input tensor |
|
:return: Output tensor |
|
""" |
|
residual = input_tensor |
|
out = self.block(input_tensor) |
|
out += residual |
|
return out |
|
|