Spaces:
Running
on
Zero
Running
on
Zero
add application file
Browse files- README.md +6 -6
- app.py +238 -0
- requirements.txt +10 -0
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.1.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Conformity Protein Dynamics
|
3 |
+
emoji: 🧬🪬
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.1.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: mit
|
11 |
+
short_description: 'use the ESM3 model to predict protein structures'
|
12 |
---
|
13 |
|
|
app.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import py3Dmol
|
3 |
+
import io
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
import traceback
|
8 |
+
import spaces
|
9 |
+
# # Install ESM
|
10 |
+
# os.system("pip install esm")
|
11 |
+
|
12 |
+
from huggingface_hub import login
|
13 |
+
from esm.models.esm3 import ESM3
|
14 |
+
from esm.sdk.api import ESM3InferenceClient, ESMProtein, GenerationConfig
|
15 |
+
from esm.utils.structure.protein_chain import ProteinChain
|
16 |
+
from Bio.Data import PDBData
|
17 |
+
import biotite.structure as bs
|
18 |
+
from biotite.structure.io import pdb
|
19 |
+
from esm.utils import residue_constants as RC
|
20 |
+
|
21 |
+
# Login to Hugging Face Hub
|
22 |
+
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
23 |
+
if not hf_token:
|
24 |
+
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
25 |
+
login(token=hf_token)
|
26 |
+
|
27 |
+
# Initialize the model
|
28 |
+
model: ESM3InferenceClient = ESM3.from_pretrained("esm3-open").to("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
|
30 |
+
amino3to1 = {
|
31 |
+
'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',
|
32 |
+
'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',
|
33 |
+
'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',
|
34 |
+
'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y'
|
35 |
+
}
|
36 |
+
|
37 |
+
def read_pdb_io(pdb_file):
|
38 |
+
if isinstance(pdb_file, io.StringIO):
|
39 |
+
pdb_content = pdb_file.getvalue()
|
40 |
+
elif hasattr(pdb_file, 'name'):
|
41 |
+
with open(pdb_file.name, 'r') as f:
|
42 |
+
pdb_content = f.read()
|
43 |
+
else:
|
44 |
+
raise ValueError("Unsupported file type")
|
45 |
+
|
46 |
+
if not pdb_content.strip():
|
47 |
+
raise ValueError("The PDB file is empty.")
|
48 |
+
|
49 |
+
pdb_io = io.StringIO(pdb_content)
|
50 |
+
return pdb_io, pdb_content
|
51 |
+
|
52 |
+
def get_protein(pdb_file) -> ESMProtein:
|
53 |
+
try:
|
54 |
+
pdb_io, content = read_pdb_io(pdb_file)
|
55 |
+
|
56 |
+
if not content.strip():
|
57 |
+
raise ValueError("The PDB file is empty")
|
58 |
+
|
59 |
+
# Parse the PDB file using biotite
|
60 |
+
pdb_file = pdb.PDBFile.read(pdb_io)
|
61 |
+
structure = pdb_file.get_structure()
|
62 |
+
|
63 |
+
# Check if the structure contains any atoms
|
64 |
+
if structure.array_length() == 0:
|
65 |
+
raise ValueError("The PDB file does not contain any valid atoms")
|
66 |
+
|
67 |
+
# Filter for amino acids and create a sequence
|
68 |
+
valid_residues = []
|
69 |
+
for res in bs.residue_iter(structure):
|
70 |
+
res_name = res.res_name
|
71 |
+
if isinstance(res_name, np.ndarray):
|
72 |
+
res_name = res_name[0] # Take the first element if it's an array
|
73 |
+
if res_name in amino3to1:
|
74 |
+
valid_residues.append(res)
|
75 |
+
|
76 |
+
if not valid_residues:
|
77 |
+
raise ValueError("No valid amino acid residues found in the PDB file")
|
78 |
+
|
79 |
+
sequence = ''.join(amino3to1.get(res.res_name[0] if isinstance(res.res_name, np.ndarray) else res.res_name, 'X') for res in valid_residues)
|
80 |
+
|
81 |
+
# Handle res_id as a potential sequence
|
82 |
+
residue_indices = []
|
83 |
+
for res in valid_residues:
|
84 |
+
if isinstance(res.res_id, (list, tuple, np.ndarray)):
|
85 |
+
residue_indices.append(res.res_id[0]) # Take the first element if it's a sequence
|
86 |
+
else:
|
87 |
+
residue_indices.append(res.res_id)
|
88 |
+
|
89 |
+
# Create a ProteinChain object
|
90 |
+
protein_chain = ProteinChain(
|
91 |
+
id="test",
|
92 |
+
sequence=sequence,
|
93 |
+
chain_id="A",
|
94 |
+
entity_id=None,
|
95 |
+
residue_index=np.array(residue_indices, dtype=int),
|
96 |
+
insertion_code=np.full(len(sequence), "", dtype="<U4"),
|
97 |
+
atom37_positions=np.full((len(sequence), 37, 3), np.nan),
|
98 |
+
atom37_mask=np.zeros((len(sequence), 37), dtype=bool),
|
99 |
+
confidence=np.ones(len(sequence), dtype=np.float32)
|
100 |
+
)
|
101 |
+
|
102 |
+
# Fill in atom positions and mask
|
103 |
+
for i, res in enumerate(valid_residues):
|
104 |
+
for atom in res:
|
105 |
+
atom_name = atom.atom_name
|
106 |
+
if isinstance(atom_name, np.ndarray):
|
107 |
+
atom_name = atom_name[0] # Take the first element if it's an array
|
108 |
+
if atom_name in RC.atom_order:
|
109 |
+
idx = RC.atom_order[atom_name]
|
110 |
+
coord = atom.coord
|
111 |
+
if coord.ndim > 1:
|
112 |
+
coord = coord[0] # Take the first coordinate set if multiple are present
|
113 |
+
protein_chain.atom37_positions[i, idx] = coord
|
114 |
+
protein_chain.atom37_mask[i, idx] = True
|
115 |
+
|
116 |
+
protein = ESMProtein.from_protein_chain(protein_chain)
|
117 |
+
return protein
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Error processing PDB file: {str(e)}")
|
120 |
+
raise ValueError(f"Unable to process the PDB file: {str(e)}")
|
121 |
+
|
122 |
+
def add_noise_to_coordinates(protein: ESMProtein, noise_level: float) -> ESMProtein:
|
123 |
+
"""Add Gaussian noise to the atom positions of the protein."""
|
124 |
+
coordinates = protein.coordinates
|
125 |
+
noise = torch.randn_like(coordinates) * noise_level
|
126 |
+
noisy_coordinates = coordinates + noise
|
127 |
+
return ESMProtein(sequence=protein.sequence, coordinates=noisy_coordinates)
|
128 |
+
|
129 |
+
def prediction_visualization(pdb_file, num_runs: int, noise_level: float, num_frames: int):
|
130 |
+
protein = get_protein(pdb_file)
|
131 |
+
runs = []
|
132 |
+
|
133 |
+
for frame in range(num_frames):
|
134 |
+
noisy_protein = add_noise_to_coordinates(protein, noise_level)
|
135 |
+
|
136 |
+
for i in range(num_runs):
|
137 |
+
structure_prediction = run_structure_prediction(noisy_protein)
|
138 |
+
aligned, crmsd = align_after_prediction(protein, structure_prediction)
|
139 |
+
runs.append((crmsd, aligned))
|
140 |
+
|
141 |
+
best_aligned = sorted(runs)[0]
|
142 |
+
view = visualize_after_pred(protein, best_aligned[1])
|
143 |
+
return view, f"Best cRMSD: {best_aligned[0]:.4f}"
|
144 |
+
|
145 |
+
def run_structure_prediction(protein: ESMProtein) -> ESMProtein:
|
146 |
+
structure_prediction_config = GenerationConfig(
|
147 |
+
track="structure",
|
148 |
+
num_steps=40,
|
149 |
+
temperature=0.7,
|
150 |
+
)
|
151 |
+
structure_prediction = model.generate(protein, structure_prediction_config)
|
152 |
+
return structure_prediction
|
153 |
+
|
154 |
+
def align_after_prediction(protein: ESMProtein, structure_prediction: ESMProtein) -> tuple[ESMProtein, float]:
|
155 |
+
structure_prediction_chain = structure_prediction.to_protein_chain()
|
156 |
+
protein_chain = protein.to_protein_chain()
|
157 |
+
structure_indices = np.arange(0, len(structure_prediction_chain.sequence))
|
158 |
+
aligned_chain = structure_prediction_chain.align(protein_chain, mobile_inds=structure_indices, target_inds=structure_indices)
|
159 |
+
crmsd = structure_prediction_chain.rmsd(protein_chain, mobile_inds=structure_indices, target_inds=structure_indices)
|
160 |
+
return ESMProtein.from_protein_chain(aligned_chain), crmsd
|
161 |
+
|
162 |
+
def visualize_after_pred(protein: ESMProtein, aligned: ESMProtein):
|
163 |
+
view = py3Dmol.view(width=800, height=600)
|
164 |
+
view.addModel(protein.to_pdb_string(), "pdb")
|
165 |
+
view.setStyle({"cartoon": {"color": "lightgrey"}})
|
166 |
+
view.addModel(aligned.to_pdb_string(), "pdb")
|
167 |
+
view.setStyle({"model": 1}, {"cartoon": {"color": "lightgreen"}})
|
168 |
+
view.zoomTo()
|
169 |
+
return view
|
170 |
+
|
171 |
+
@spaces.GPU()
|
172 |
+
def run_prediction(pdb_file, num_runs, noise_level, num_frames):
|
173 |
+
try:
|
174 |
+
if pdb_file is None:
|
175 |
+
return "Please upload a PDB file.", "No file uploaded"
|
176 |
+
|
177 |
+
view, crmsd_text = prediction_visualization(pdb_file, num_runs, noise_level, num_frames)
|
178 |
+
html = view._make_html()
|
179 |
+
return f"""
|
180 |
+
<div style="height: 600px;">
|
181 |
+
{html}
|
182 |
+
</div>
|
183 |
+
""", crmsd_text
|
184 |
+
except Exception as e:
|
185 |
+
error_message = str(e)
|
186 |
+
stack_trace = traceback.format_exc()
|
187 |
+
return f"""
|
188 |
+
<div style='color: red;'>
|
189 |
+
<h3>Error:</h3>
|
190 |
+
<p>{error_message}</p>
|
191 |
+
<h4>Stack Trace:</h4>
|
192 |
+
<pre>{stack_trace}</pre>
|
193 |
+
</div>
|
194 |
+
""", "Error occurred"
|
195 |
+
|
196 |
+
def create_demo():
|
197 |
+
with gr.Blocks() as demo:
|
198 |
+
gr.Markdown("# Protein Structure Prediction and Visualization with Noise and MD Frames")
|
199 |
+
|
200 |
+
with gr.Row():
|
201 |
+
with gr.Column(scale=1):
|
202 |
+
pdb_file = gr.File(label="Upload PDB file")
|
203 |
+
num_runs = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Number of runs per frame")
|
204 |
+
noise_level = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.1, label="Noise level")
|
205 |
+
num_frames = gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Number of MD frames")
|
206 |
+
run_button = gr.Button("Run Prediction")
|
207 |
+
|
208 |
+
with gr.Column(scale=2):
|
209 |
+
visualization = gr.HTML(label="3D Visualization")
|
210 |
+
alignment_result = gr.Textbox(label="Alignment Result")
|
211 |
+
|
212 |
+
run_button.click(
|
213 |
+
fn=run_prediction,
|
214 |
+
inputs=[pdb_file, num_runs, noise_level, num_frames],
|
215 |
+
outputs=[visualization, alignment_result]
|
216 |
+
)
|
217 |
+
|
218 |
+
gr.Markdown("""
|
219 |
+
## How to use
|
220 |
+
1. Upload a PDB file using the file uploader.
|
221 |
+
2. Adjust the number of prediction runs per frame using the slider.
|
222 |
+
3. Set the noise level to add random perturbations to the structure.
|
223 |
+
4. Choose the number of MD frames to simulate.
|
224 |
+
5. Click the "Run Prediction" button to start the process.
|
225 |
+
6. The 3D visualization will show the original structure (grey) and the best predicted structure (green).
|
226 |
+
7. The alignment result will display the best cRMSD (lower is better).
|
227 |
+
|
228 |
+
## About
|
229 |
+
This demo uses the ESM3 model to predict protein structures from PDB files.
|
230 |
+
It runs multiple predictions with added noise and simulated MD frames, displaying the best result based on the lowest cRMSD.
|
231 |
+
""")
|
232 |
+
|
233 |
+
return demo
|
234 |
+
|
235 |
+
if __name__ == "__main__":
|
236 |
+
demo = create_demo()
|
237 |
+
demo.queue()
|
238 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torchvision
|
3 |
+
requests
|
4 |
+
py3Dmol
|
5 |
+
biopython
|
6 |
+
pandas
|
7 |
+
torch
|
8 |
+
numpy
|
9 |
+
esm
|
10 |
+
biotite
|