Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app/content.py +7 -0
- app/pages.py +30 -1
- app/summarization.py +1 -1
app/content.py
CHANGED
@@ -68,6 +68,10 @@ cnasr_datasets = {
|
|
68 |
'Aishell-ASR-ZH-Test': 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.'
|
69 |
}
|
70 |
|
|
|
|
|
|
|
|
|
71 |
metrics = {
|
72 |
'wer': 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower, the better)',
|
73 |
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
|
@@ -84,6 +88,7 @@ metrics_info = {
|
|
84 |
'bleu': 'BLEU Score. The higher, the better.',
|
85 |
}
|
86 |
|
|
|
87 |
dataname_column_rename_in_table = {
|
88 |
'librispeech_test_clean' : 'LibriSpeech-Clean',
|
89 |
'librispeech_test_other' : 'LibriSpeech-Other',
|
@@ -126,5 +131,7 @@ dataname_column_rename_in_table = {
|
|
126 |
'imda_part5_30s_asr_test' : 'IMDA-Part5-30s-ASR',
|
127 |
'imda_part6_30s_asr_test' : 'IMDA-Part6-30s-ASR',
|
128 |
|
|
|
|
|
129 |
|
130 |
}
|
|
|
68 |
'Aishell-ASR-ZH-Test': 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.'
|
69 |
}
|
70 |
|
71 |
+
MUSIC_MCQ_DATASETS = {
|
72 |
+
'MuChoMusic-Test': 'Test dataset for music understanding, from paper: MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models.'
|
73 |
+
}
|
74 |
+
|
75 |
metrics = {
|
76 |
'wer': 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower, the better)',
|
77 |
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
|
|
|
88 |
'bleu': 'BLEU Score. The higher, the better.',
|
89 |
}
|
90 |
|
91 |
+
|
92 |
dataname_column_rename_in_table = {
|
93 |
'librispeech_test_clean' : 'LibriSpeech-Clean',
|
94 |
'librispeech_test_other' : 'LibriSpeech-Other',
|
|
|
131 |
'imda_part5_30s_asr_test' : 'IMDA-Part5-30s-ASR',
|
132 |
'imda_part6_30s_asr_test' : 'IMDA-Part6-30s-ASR',
|
133 |
|
134 |
+
'muchomusic_test' : 'MuChoMusic'
|
135 |
+
|
136 |
|
137 |
}
|
app/pages.py
CHANGED
@@ -373,8 +373,37 @@ def spt():
|
|
373 |
|
374 |
if filter_1:
|
375 |
if filter_1 in sum:
|
376 |
-
sum_table_mulit_metrix('
|
377 |
else:
|
378 |
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
|
379 |
draw('su', 'ST', filter_1, 'bleu')
|
380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
|
374 |
if filter_1:
|
375 |
if filter_1 in sum:
|
376 |
+
sum_table_mulit_metrix('st', ['bleu'])
|
377 |
else:
|
378 |
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
|
379 |
draw('su', 'ST', filter_1, 'bleu')
|
380 |
|
381 |
+
|
382 |
+
def music_mcq():
|
383 |
+
st.title("Task: Music Understanding - MCQ Questions")
|
384 |
+
|
385 |
+
sum = ['Overall']
|
386 |
+
|
387 |
+
dataset_lists = ['MuChoMusic-Test',
|
388 |
+
]
|
389 |
+
|
390 |
+
filters_levelone = sum + dataset_lists
|
391 |
+
|
392 |
+
left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
393 |
+
|
394 |
+
with left:
|
395 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
396 |
+
|
397 |
+
if filter_1:
|
398 |
+
if filter_1 in sum:
|
399 |
+
sum_table_mulit_metrix('music_mcq', ['llama3_70b_judge_binary'])
|
400 |
+
else:
|
401 |
+
dataset_contents(MUSIC_MCQ_DATASETS[filter_1], metrics['llama3_70b_judge_binary'])
|
402 |
+
draw('vu', 'music_mcq', filter_1, 'llama3_70b_judge_binary')
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
|
app/summarization.py
CHANGED
@@ -21,7 +21,7 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
|
21 |
# combine chart data from multiple sources
|
22 |
chart_data = pd.DataFrame()
|
23 |
for metrics in metrics_lists:
|
24 |
-
folder = f"./results/{metrics}
|
25 |
data_path = f'{folder}/{task_name.lower()}.csv'
|
26 |
one_chart_data = pd.read_csv(data_path).round(3)
|
27 |
if len(chart_data) == 0:
|
|
|
21 |
# combine chart data from multiple sources
|
22 |
chart_data = pd.DataFrame()
|
23 |
for metrics in metrics_lists:
|
24 |
+
folder = f"./results/{metrics}"
|
25 |
data_path = f'{folder}/{task_name.lower()}.csv'
|
26 |
one_chart_data = pd.read_csv(data_path).round(3)
|
27 |
if len(chart_data) == 0:
|