Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from streamlit_echarts import st_echarts | |
from streamlit.components.v1 import html | |
# from PIL import Image | |
from app.show_examples import * | |
import pandas as pd | |
# huggingface_image = Image.open('style/huggingface.jpg') | |
# other info | |
#path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx" | |
path = "./additional_info/Leaderboard-Rename.xlsx" | |
info_df = pd.read_excel(path) | |
# def nav_to(value): | |
# try: | |
# url = links_dic[str(value).lower()] | |
# js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);' | |
# st_javascript(js) | |
# except: | |
# pass | |
def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True): | |
folder = f"./results/{metrics}/" | |
display_names = { | |
'SU': 'Speech Understanding', | |
'ASU': 'Audio Scene Understanding', | |
'VU': 'Voice Understanding' | |
} | |
data_path = f'{folder}/{category_name.lower()}.csv' | |
chart_data = pd.read_csv(data_path).round(3) | |
new_dataset_name = dataset_name.replace('-', '_').lower() | |
chart_data = chart_data[['Model', new_dataset_name]] | |
st.markdown(""" | |
<style> | |
.stMultiSelect [data-baseweb=select] span { | |
max-width: 800px; | |
font-size: 0.9rem; | |
background-color: #3C6478 !important; /* Background color for selected items */ | |
color: white; /* Change text color */ | |
back | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# remap model names | |
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['AudioBench'], info_df['Proper Display Name'])} | |
chart_data['model_show'] = chart_data['Model'].map(display_model_names) | |
models = st.multiselect("Please choose the model", | |
sorted(chart_data['model_show'].tolist()), | |
default = sorted(chart_data['model_show'].tolist())) | |
chart_data = chart_data[chart_data['model_show'].isin(models)] | |
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0) | |
# import pdb | |
# pdb.set_trace() | |
if len(chart_data) == 0: | |
return | |
min_value = round(min(chart_data.iloc[:, 1]) - 0.1*min(chart_data.iloc[:, 1]), 1) | |
max_value = round(max(chart_data.iloc[:, 1]) + 0.1*max(chart_data.iloc[:, 1]), 1) | |
options = { | |
"title": {"text": f"{display_names[folder_name.upper()]}"}, | |
"tooltip": { | |
"trigger": "axis", | |
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}}, | |
"triggerOn": 'mousemove', | |
}, | |
"legend": {"data": ['Overall Accuracy']}, | |
"toolbox": {"feature": {"saveAsImage": {}}}, | |
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True}, | |
"xAxis": [ | |
{ | |
"type": "category", | |
"boundaryGap": True, | |
"triggerEvent": True, | |
"data": chart_data['model_show'].tolist(), | |
} | |
], | |
"yAxis": [{"type": "value", | |
"min": min_value, | |
"max": max_value, | |
"boundaryGap": True | |
# "splitNumber": 10 | |
}], | |
"series": [{ | |
"name": f"{dataset_name}", | |
"type": "bar", | |
"data": chart_data[f'{new_dataset_name}'].tolist(), | |
}], | |
} | |
events = { | |
"click": "function(params) { return params.value }" | |
} | |
value = st_echarts(options=options, events=events, height="500px") | |
# if value != None: | |
# # print(value) | |
# nav_to(value) | |
# if value != None: | |
# highlight_table_line(value) | |
''' | |
Show table | |
''' | |
# st.divider() | |
with st.container(): | |
# st.write("") | |
st.markdown('##### TABLE') | |
# custom_css = """ | |
# """ | |
# st.markdown(custom_css, unsafe_allow_html=True) | |
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])} | |
chart_data['model_link'] = chart_data['model_show'].map(model_link) | |
# import pdb | |
# pdb.set_trace() | |
chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]] | |
st.dataframe( | |
chart_data_table, | |
column_config={ | |
'model_show': 'Model', | |
chart_data_table.columns[1]: {'alignment': 'center'}, | |
"model_link": st.column_config.LinkColumn( | |
"Model Link", | |
# # # help="", | |
# validate=r"^https://(.*?)$", | |
# # max_chars=100, | |
# display_text=r"\[(.*?)\]" | |
), | |
}, | |
hide_index=True, | |
use_container_width=True | |
) | |
# s = '' | |
# for model in models: | |
# try: | |
# # <td align="center"><input type="checkbox" name="select"></td> | |
# s += f"""<tr> | |
# <td><a href={model_link[model]}>{model}</a></td> | |
# <td>{chart_data[chart_data['Model'] == model][new_dataset_name].tolist()[0]}</td> | |
# </tr>""" | |
# except: | |
# # print(f"{model} is not in {dataset_name}") | |
# continue | |
# # select all function | |
# select_all_function = """<script> | |
# function toggle(source) { | |
# var checkboxes = document.querySelectorAll('input[type="checkbox"]'); | |
# for (var i = 0; i < checkboxes.length; i++) { | |
# if (checkboxes[i] != source) | |
# checkboxes[i].checked = source.checked; | |
# } | |
# } | |
# </script>""" | |
# st.markdown(f""" | |
# <div class="select_all">{select_all_function}</div> | |
# """, unsafe_allow_html=True) | |
# info_body_details = f""" | |
# <table style="width:80%"> | |
# <thead> | |
# <tr style="text-align: center;"> | |
# <th style="width:45%">MODEL</th> | |
# <th style="width:45%">{dataset_name}</th> | |
# </tr> | |
# {s} | |
# </thead> | |
# </table> | |
# """ | |
# #<th style="width:10%"><input type="checkbox" onclick="toggle(this);"></th> | |
# # html_code = custom_css + select_all_function + info_body_details | |
# # html(html_code, height = 300) | |
# st.markdown(f""" | |
# <div class="my-data-table">{info_body_details}</div> | |
# """, unsafe_allow_html=True) | |
# st.dataframe(chart_data, | |
# # column_config = { | |
# # "Link": st.column_config.LinkColumn( | |
# # display_text= st.image(huggingface_image) | |
# # ), | |
# # }, | |
# hide_index = True, | |
# use_container_width=True) | |
''' | |
show samples | |
''' | |
if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Long-form-Test']: | |
pass | |
else: | |
show_examples(category_name, dataset_name, chart_data['Model'].tolist()) | |