File size: 11,742 Bytes
b0e6781
 
166575b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcedbb9
166575b
 
fcedbb9
166575b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e6ec3
b0e6781
f2b616f
b0e6781
 
 
 
 
 
 
 
 
36e6ec3
b0e6781
 
 
 
 
 
 
 
 
 
 
 
166575b
29fc06d
166575b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
 
f3cadf1
b0e6781
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
b0e6781
166575b
b0e6781
166575b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
 
b0e6781
 
 
 
 
 
 
166575b
b0e6781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
b0e6781
 
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
166575b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import streamlit as st
from app.draw_diagram import *
from app.content import *

def dataset_contents(dataset, metrics):
    
    custom_css = """
                <style>
                .my-dataset-info {
                # background-color: #F9EBEA;
                # padding: 10px;
                color: #626567;
                font-style: italic;
                font-size: 8px;
                height: auto;
                }
                </style>
                """
    st.markdown(custom_css, unsafe_allow_html=True)
    st.markdown(f"""<div class="my-dataset-info">
                    <p><b>Dataset Information</b>: {dataset}</p>
                    </div>""", unsafe_allow_html=True)
    st.markdown(f"""<div class="my-dataset-info">
                    <p><b>Metric Information</b>: {metrics}</p>
                    </div>""", unsafe_allow_html=True)


def dashboard():

    with st.container():
        st.title("AudioBench")
   
        st.markdown("""
            [gh]: https://github.com/AudioLLMs/AudioBench
            [![GitHub watchers](https://img.shields.io/github/watchers/AudioLLMs/AudioBench?style=social)][gh]
            [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh]
            """)

    audio_url = "https://arxiv.org/abs/2406.16020"

    st.divider()
    st.markdown("#### [AudioBench](%s)" % audio_url)
    st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models")
    st.markdown('''

                
                ''')

    with st.container():
        left_co, center_co, right_co = st.columns([0.5,1, 0.5])
        with center_co:
            st.image("./style/audio_overview.png", 
                     caption="Overview of the datasets in AudioBench.", 
                     use_column_width = True)
        
        st.markdown('''

                
                ''')
        
        st.markdown("###### :dart: Our Benchmark includes: ")
        cols = st.columns(10)
        cols[1].metric(label="Tasks", value="8") #delta="Tasks", delta_color="off"
        cols[2].metric(label="Datasets", value="26")
        cols[3].metric(label="Test Models", value="5")

        # st.markdown("###### :dart: Supported Models and Datasets: ")
        
        # sup = pd.DataFrame(
        #         {"Dataset": "LibriSpeech-Clean", 
        #          "Category": st.selectbox('category', ['Speech Understanding']),
        #          "Task": st.selectbox('task', ['Automatic Speech Recognition']),
        #          "Metrics": st.selectbox('metrics', ['WER']),
        #          "Status":True}
        # )
        
        # st.data_editor(sup, num_rows="dynamic")


    st.divider()
    with st.container():
        st.markdown("##### Citations")

        st.markdown('''
                    :round_pushpin: AudioBench Paper \n
                        @article{wang2024audiobench,
                            title={AudioBench: A Universal Benchmark for Audio Large Language Models},
                            author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
                            journal={arXiv preprint arXiv:2406.16020},
                            year={2024}
                            }
                    ''')

def asr():
    st.title("Automatic Speech Recognition")
    
    filters_levelone = ['LibriSpeech-Test-Clean', 
                        'LibriSpeech-Test-Other', 
                        'Common-Voice-15-En-Test', 
                        'Peoples-Speech-Test', 
                        'GigaSpeech-Test', 
                        'Earnings21-Test', 
                        'Earnings22-Test', 
                        'Tedlium3-Test', 
                        'Tedlium3-Long-form-Test', 
                        'IMDA-Part1-ASR-Test', 
                        'IMDA-Part2-ASR-Test']
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)
    
    # with middle:
    #     if filter_1 == filters_levelone[0]:
    #         sort_leveltwo = ['LibriSpeech-Test-Clean', 'LibriSpeech-Test-Other', 'Common-Voice-15-En-Test', 'Peoples-Speech-Test',
    #                         'GigaSpeech-Test', 'Tedlium3-Test','Tedlium3-Long-form-Test', 'Earning-21-Test', 'Earning-22-Test']
    #     elif filter_1 == filters_levelone[1]:
    #         sort_leveltwo = ['CN-College-Listen-Test', 'SLUE-P2-SQA5-Test', 'DREAM-TTS-Test', 'Public-SG-SpeechQA-Test']
        
    #     elif filter_1 == filters_levelone[2]:
    #         sort_leveltwo = ['OpenHermes-Audio-Test', 'ALPACA-Audio-Test']
        
    #     sort = st.selectbox("Sort Dataset", sort_leveltwo)
    
    # with right:
    #     sorted = st.selectbox('by', ['Ascending', 'Descending'])

    if filter_1:
        dataset_contents(asr_datsets[filter_1], metrics['wer'])
        draw('su', 'ASR', filter_1, 'wer', cus_sort=True)
    # else:
    #     draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'wer')


    ## examples
    

def sqa():
    st.title("Speech Question Answering")
    
    binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']

    rest = ['SLUE-P2-SQA5-Test', 
            'Public-SG-Speech-QA-Test', 
            'Spoken-Squad-Test']

    filters_levelone = binary + rest
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)

    if filter_1:
        if filter_1 in binary:
            dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge_binary'])
            draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
        
        else:
            dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('su', 'SQA', filter_1, 'llama3_70b_judge')
    # else:
    #     draw('su', 'SQA', 'CN-College-Listen-Test', 'llama3_70b_judge_binary')

def si():
    st.title("Speech Question Answering")
    
    filters_levelone = ['OpenHermes-Audio-Test', 
                        'ALPACA-Audio-Test']
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)

    if filter_1:
        dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
        draw('su', 'SI', filter_1, 'llama3_70b_judge')
    # else:
    #     draw('su', 'SI', 'OpenHermes-Audio-Test', 'llama3_70b_judge')

def ac():
    st.title("Audio Captioning")

    filters_levelone = ['WavCaps-Test', 
                        'AudioCaps-Test']
    filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)
    with middle:
        metric = st.selectbox('Select Metric', filters_leveltwo)
    
    # with middle:
    #     if filter_1 == filters_levelone[0]:
    #         sort_leveltwo = ['Clotho-AQA-Test', 'WavCaps-QA-Test', 'AudioCaps-QA-Test']
    #     elif filter_1 == filters_levelone[1]:
    #         sort_leveltwo = ['WavCaps-Test', 'AudioCaps-Test']
        
    #     sort = st.selectbox("Sort Dataset", sort_leveltwo)
    
    # with right:
    #     sorted = st.selectbox('by', ['Ascending', 'Descending'])

    if filter_1 or metric:
        dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
        draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
    # else:
    #     draw('asu', 'AC', 'WavCaps-Test', 'llama3_70b_judge')

def asqa():
    st.title("Audio Scene Question Answering")

    filters_levelone = ['Clotho-AQA-Test', 
                        'WavCaps-QA-Test', 
                        'AudioCaps-QA-Test']
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)
    
    if filter_1:
        dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
        draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
    # else:
    #     draw('asu', 'AQA', 'Clotho-AQA-Test', 'llama3_70b_judge')

def er():
    st.title("Emotion Recognition")

    filters_levelone = ['IEMOCAP-Emotion-Test', 
                        'MELD-Sentiment-Test', 
                        'MELD-Emotion-Test']
    # sort_leveltwo = []
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)
    
    # with middle:
    #     if filter_1 == filters_levelone[0]:
    #         sort_leveltwo = ['IEMOCAP-Emotion-Test', 'MELD-Sentiment-Test', 'MELD-Emotion-Test']
        
    #     elif filter_1 == filters_levelone[1]:
    #         sort_leveltwo = ['VoxCeleb1-Accent-Test']
        
    #     elif filter_1 == filters_levelone[2]:
    #         sort_leveltwo = ['VoxCeleb1-Gender-Test', 'IEMOCAP-Gender-Test']
        
    #     sort = st.selectbox("Sort Dataset", sort_leveltwo)
    
    # with right:
    #     sorted = st.selectbox('by', ['Ascending', 'Descending'])

    if filter_1:
        dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary'])
        draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
    # else:
    #     draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'llama3_70b_judge_binary')

def ar():
    st.title("Accent Recognition")

    filters_levelone = ['VoxCeleb-Accent-Test']
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)


    if filter_1:
        dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
        draw('vu', 'AR', filter_1, 'llama3_70b_judge')


def gr():
    st.title("Emotion Recognition")

    filters_levelone = ['VoxCeleb-Gender-Test', 
                        'IEMOCAP-Gender-Test']
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)
    
    if filter_1:
        dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary'])
        draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
    # else:
    #     draw('vu', 'GR', 'VoxCeleb1-Gender-Test', 'llama3_70b_judge_binary')

def spt():
    st.title("Speech Translation")

    filters_levelone = ['Covost2-EN-ID-test', 
                        'Covost2-EN-ZH-test',
                        'Covost2-EN-TA-test', 
                        'Covost2-ID-EN-test', 
                        'Covost2-ZH-EN-test', 
                        'Covost2-TA-EN-test']
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)
    
    if filter_1:
        dataset_contents(spt_datasets[filter_1], metrics['bleu'])
        draw('su', 'ST', filter_1, 'bleu')
    # else:
    #     draw('su', 'ST', 'Covost2-EN-ID-test', 'bleu')

def cnasr():
    st.title("Chinese Automatic Speech Recognition")

    filters_levelone = ['Aishell-ASR-ZH-Test']
    
    left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Select Dataset', filters_levelone)
    
    if filter_1:
        dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
        draw('su', 'CNASR', filter_1, 'wer')
    # else:
    #     draw('su', 'CNASR', 'Aishell-ASR-ZH-Test', 'wer')