Spaces:
Running
Running
File size: 11,742 Bytes
b0e6781 166575b fcedbb9 166575b fcedbb9 166575b b0e6781 36e6ec3 b0e6781 f2b616f b0e6781 36e6ec3 b0e6781 166575b 29fc06d 166575b b0e6781 f3cadf1 b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b b0e6781 166575b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import streamlit as st
from app.draw_diagram import *
from app.content import *
def dataset_contents(dataset, metrics):
custom_css = """
<style>
.my-dataset-info {
# background-color: #F9EBEA;
# padding: 10px;
color: #626567;
font-style: italic;
font-size: 8px;
height: auto;
}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
st.markdown(f"""<div class="my-dataset-info">
<p><b>Dataset Information</b>: {dataset}</p>
</div>""", unsafe_allow_html=True)
st.markdown(f"""<div class="my-dataset-info">
<p><b>Metric Information</b>: {metrics}</p>
</div>""", unsafe_allow_html=True)
def dashboard():
with st.container():
st.title("AudioBench")
st.markdown("""
[gh]: https://github.com/AudioLLMs/AudioBench
[![GitHub watchers](https://img.shields.io/github/watchers/AudioLLMs/AudioBench?style=social)][gh]
[![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh]
""")
audio_url = "https://arxiv.org/abs/2406.16020"
st.divider()
st.markdown("#### [AudioBench](%s)" % audio_url)
st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models")
st.markdown('''
''')
with st.container():
left_co, center_co, right_co = st.columns([0.5,1, 0.5])
with center_co:
st.image("./style/audio_overview.png",
caption="Overview of the datasets in AudioBench.",
use_column_width = True)
st.markdown('''
''')
st.markdown("###### :dart: Our Benchmark includes: ")
cols = st.columns(10)
cols[1].metric(label="Tasks", value="8") #delta="Tasks", delta_color="off"
cols[2].metric(label="Datasets", value="26")
cols[3].metric(label="Test Models", value="5")
# st.markdown("###### :dart: Supported Models and Datasets: ")
# sup = pd.DataFrame(
# {"Dataset": "LibriSpeech-Clean",
# "Category": st.selectbox('category', ['Speech Understanding']),
# "Task": st.selectbox('task', ['Automatic Speech Recognition']),
# "Metrics": st.selectbox('metrics', ['WER']),
# "Status":True}
# )
# st.data_editor(sup, num_rows="dynamic")
st.divider()
with st.container():
st.markdown("##### Citations")
st.markdown('''
:round_pushpin: AudioBench Paper \n
@article{wang2024audiobench,
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
journal={arXiv preprint arXiv:2406.16020},
year={2024}
}
''')
def asr():
st.title("Automatic Speech Recognition")
filters_levelone = ['LibriSpeech-Test-Clean',
'LibriSpeech-Test-Other',
'Common-Voice-15-En-Test',
'Peoples-Speech-Test',
'GigaSpeech-Test',
'Earnings21-Test',
'Earnings22-Test',
'Tedlium3-Test',
'Tedlium3-Long-form-Test',
'IMDA-Part1-ASR-Test',
'IMDA-Part2-ASR-Test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
# with middle:
# if filter_1 == filters_levelone[0]:
# sort_leveltwo = ['LibriSpeech-Test-Clean', 'LibriSpeech-Test-Other', 'Common-Voice-15-En-Test', 'Peoples-Speech-Test',
# 'GigaSpeech-Test', 'Tedlium3-Test','Tedlium3-Long-form-Test', 'Earning-21-Test', 'Earning-22-Test']
# elif filter_1 == filters_levelone[1]:
# sort_leveltwo = ['CN-College-Listen-Test', 'SLUE-P2-SQA5-Test', 'DREAM-TTS-Test', 'Public-SG-SpeechQA-Test']
# elif filter_1 == filters_levelone[2]:
# sort_leveltwo = ['OpenHermes-Audio-Test', 'ALPACA-Audio-Test']
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
# with right:
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
if filter_1:
dataset_contents(asr_datsets[filter_1], metrics['wer'])
draw('su', 'ASR', filter_1, 'wer', cus_sort=True)
# else:
# draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'wer')
## examples
def sqa():
st.title("Speech Question Answering")
binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']
rest = ['SLUE-P2-SQA5-Test',
'Public-SG-Speech-QA-Test',
'Spoken-Squad-Test']
filters_levelone = binary + rest
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
if filter_1:
if filter_1 in binary:
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge_binary'])
draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
else:
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
draw('su', 'SQA', filter_1, 'llama3_70b_judge')
# else:
# draw('su', 'SQA', 'CN-College-Listen-Test', 'llama3_70b_judge_binary')
def si():
st.title("Speech Question Answering")
filters_levelone = ['OpenHermes-Audio-Test',
'ALPACA-Audio-Test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
if filter_1:
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
draw('su', 'SI', filter_1, 'llama3_70b_judge')
# else:
# draw('su', 'SI', 'OpenHermes-Audio-Test', 'llama3_70b_judge')
def ac():
st.title("Audio Captioning")
filters_levelone = ['WavCaps-Test',
'AudioCaps-Test']
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
with middle:
metric = st.selectbox('Select Metric', filters_leveltwo)
# with middle:
# if filter_1 == filters_levelone[0]:
# sort_leveltwo = ['Clotho-AQA-Test', 'WavCaps-QA-Test', 'AudioCaps-QA-Test']
# elif filter_1 == filters_levelone[1]:
# sort_leveltwo = ['WavCaps-Test', 'AudioCaps-Test']
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
# with right:
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
if filter_1 or metric:
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
# else:
# draw('asu', 'AC', 'WavCaps-Test', 'llama3_70b_judge')
def asqa():
st.title("Audio Scene Question Answering")
filters_levelone = ['Clotho-AQA-Test',
'WavCaps-QA-Test',
'AudioCaps-QA-Test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
if filter_1:
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
# else:
# draw('asu', 'AQA', 'Clotho-AQA-Test', 'llama3_70b_judge')
def er():
st.title("Emotion Recognition")
filters_levelone = ['IEMOCAP-Emotion-Test',
'MELD-Sentiment-Test',
'MELD-Emotion-Test']
# sort_leveltwo = []
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
# with middle:
# if filter_1 == filters_levelone[0]:
# sort_leveltwo = ['IEMOCAP-Emotion-Test', 'MELD-Sentiment-Test', 'MELD-Emotion-Test']
# elif filter_1 == filters_levelone[1]:
# sort_leveltwo = ['VoxCeleb1-Accent-Test']
# elif filter_1 == filters_levelone[2]:
# sort_leveltwo = ['VoxCeleb1-Gender-Test', 'IEMOCAP-Gender-Test']
# sort = st.selectbox("Sort Dataset", sort_leveltwo)
# with right:
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
if filter_1:
dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary'])
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
# else:
# draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'llama3_70b_judge_binary')
def ar():
st.title("Accent Recognition")
filters_levelone = ['VoxCeleb-Accent-Test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
if filter_1:
dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
draw('vu', 'AR', filter_1, 'llama3_70b_judge')
def gr():
st.title("Emotion Recognition")
filters_levelone = ['VoxCeleb-Gender-Test',
'IEMOCAP-Gender-Test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
if filter_1:
dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary'])
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
# else:
# draw('vu', 'GR', 'VoxCeleb1-Gender-Test', 'llama3_70b_judge_binary')
def spt():
st.title("Speech Translation")
filters_levelone = ['Covost2-EN-ID-test',
'Covost2-EN-ZH-test',
'Covost2-EN-TA-test',
'Covost2-ID-EN-test',
'Covost2-ZH-EN-test',
'Covost2-TA-EN-test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
if filter_1:
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
draw('su', 'ST', filter_1, 'bleu')
# else:
# draw('su', 'ST', 'Covost2-EN-ID-test', 'bleu')
def cnasr():
st.title("Chinese Automatic Speech Recognition")
filters_levelone = ['Aishell-ASR-ZH-Test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Dataset', filters_levelone)
if filter_1:
dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
draw('su', 'CNASR', filter_1, 'wer')
# else:
# draw('su', 'CNASR', 'Aishell-ASR-ZH-Test', 'wer')
|