DDT / src /diffusion /ddpm /training.py
wangshuai6
init space
9e426da
import torch
from typing import Callable
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
def inverse_sigma(alpha, sigma):
return 1/sigma**2
def snr(alpha, sigma):
return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
return 1
class VPTrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn:Callable=constant,
train_max_t=1000,
lognorm_t=False,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.lognorm_t = lognorm_t
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
self.train_max_t = train_max_t
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
batch_size = x.shape[0]
if self.lognorm_t:
t = torch.randn(batch_size).to(x.device, x.dtype).sigmoid()
else:
t = torch.rand(batch_size).to(x.device, x.dtype)
noise = torch.randn_like(x)
alpha = self.scheduler.alpha(t)
sigma = self.scheduler.sigma(t)
x_t = alpha * x + noise * sigma
out = net(x_t, t*self.train_max_t, y)
weight = self.loss_weight_fn(alpha, sigma)
loss = weight*(out - noise)**2
out = dict(
loss=loss.mean(),
)
return out
class DDPMTrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn: Callable = constant,
train_max_t=1000,
lognorm_t=False,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.lognorm_t = lognorm_t
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
self.train_max_t = train_max_t
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
batch_size = x.shape[0]
t = torch.randint(0, self.train_max_t, (batch_size,))
noise = torch.randn_like(x)
alpha = self.scheduler.alpha(t)
sigma = self.scheduler.sigma(t)
x_t = alpha * x + noise * sigma
out = net(x_t, t, y)
weight = self.loss_weight_fn(alpha, sigma)
loss = weight * (out - noise) ** 2
out = dict(
loss=loss.mean(),
)
return out