Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from src.diffusion.base.scheduling import * | |
from src.diffusion.base.sampling import * | |
from typing import Callable | |
import logging | |
logger = logging.getLogger(__name__) | |
class DDIMSampler(BaseSampler): | |
def __init__( | |
self, | |
train_num_steps=1000, | |
*args, | |
**kwargs | |
): | |
super().__init__(*args, **kwargs) | |
self.train_num_steps = train_num_steps | |
assert self.scheduler is not None | |
def _impl_sampling(self, net, noise, condition, uncondition): | |
batch_size = noise.shape[0] | |
steps = torch.linspace(0.0, self.train_num_steps-1, self.num_steps, device=noise.device) | |
steps = torch.flip(steps, dims=[0]) | |
cfg_condition = torch.cat([uncondition, condition], dim=0) | |
x = x0 = noise | |
for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])): | |
t_cur = t_cur.repeat(batch_size) | |
t_next = t_next.repeat(batch_size) | |
sigma = self.scheduler.sigma(t_cur) | |
alpha = self.scheduler.alpha(t_cur) | |
sigma_next = self.scheduler.sigma(t_next) | |
alpha_next = self.scheduler.alpha(t_next) | |
cfg_x = torch.cat([x, x], dim=0) | |
t = t_cur.repeat(2) | |
out = net(cfg_x, t, cfg_condition) | |
out = self.guidance_fn(out, self.guidance) | |
x0 = (x - sigma * out) / alpha | |
x = alpha_next * x0 + sigma_next * out | |
return x0 |