DDT / src /diffusion /ddpm /ddim_sampling.py
wangshuai6
init space
9e426da
import torch
from src.diffusion.base.scheduling import *
from src.diffusion.base.sampling import *
from typing import Callable
import logging
logger = logging.getLogger(__name__)
class DDIMSampler(BaseSampler):
def __init__(
self,
train_num_steps=1000,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.train_num_steps = train_num_steps
assert self.scheduler is not None
def _impl_sampling(self, net, noise, condition, uncondition):
batch_size = noise.shape[0]
steps = torch.linspace(0.0, self.train_num_steps-1, self.num_steps, device=noise.device)
steps = torch.flip(steps, dims=[0])
cfg_condition = torch.cat([uncondition, condition], dim=0)
x = x0 = noise
for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])):
t_cur = t_cur.repeat(batch_size)
t_next = t_next.repeat(batch_size)
sigma = self.scheduler.sigma(t_cur)
alpha = self.scheduler.alpha(t_cur)
sigma_next = self.scheduler.sigma(t_next)
alpha_next = self.scheduler.alpha(t_next)
cfg_x = torch.cat([x, x], dim=0)
t = t_cur.repeat(2)
out = net(cfg_x, t, cfg_condition)
out = self.guidance_fn(out, self.guidance)
x0 = (x - sigma * out) / alpha
x = alpha_next * x0 + sigma_next * out
return x0