import torch from src.diffusion.base.scheduling import * from src.diffusion.base.sampling import * from typing import Callable import logging logger = logging.getLogger(__name__) class DDIMSampler(BaseSampler): def __init__( self, train_num_steps=1000, *args, **kwargs ): super().__init__(*args, **kwargs) self.train_num_steps = train_num_steps assert self.scheduler is not None def _impl_sampling(self, net, noise, condition, uncondition): batch_size = noise.shape[0] steps = torch.linspace(0.0, self.train_num_steps-1, self.num_steps, device=noise.device) steps = torch.flip(steps, dims=[0]) cfg_condition = torch.cat([uncondition, condition], dim=0) x = x0 = noise for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])): t_cur = t_cur.repeat(batch_size) t_next = t_next.repeat(batch_size) sigma = self.scheduler.sigma(t_cur) alpha = self.scheduler.alpha(t_cur) sigma_next = self.scheduler.sigma(t_next) alpha_next = self.scheduler.alpha(t_next) cfg_x = torch.cat([x, x], dim=0) t = t_cur.repeat(2) out = net(cfg_x, t, cfg_condition) out = self.guidance_fn(out, self.guidance) x0 = (x - sigma * out) / alpha x = alpha_next * x0 + sigma_next * out return x0