amupd's picture
SpeechT5 upload
62e9ca6
raw
history blame
28.8 kB
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
"""
Modified from
https://github.com/facebookresearch/fairseq/blob/main/fairseq/tasks/hubert_pretraining.py
https://github.com/facebookresearch/fairseq/blob/main/fairseq/tasks/denoising.py
Pre-training task for YiTrans@IWSLT2022
Step1: Combine Speech2C and multilingual BART
Step2: Combine ASR and multilingual MT
"""
import logging
import os
import sys
from typing import Dict, List, Optional, Tuple
from pathlib import Path
import numpy as np
from argparse import Namespace
from collections import OrderedDict
from dataclasses import dataclass, field
from fairseq.data import Dictionary, encoders
from fairseq.data import (
Dictionary,
data_utils,
StripTokenDataset,
PrependTokenDataset,
AppendTokenDataset,
FairseqDataset,
iterators,
ResamplingDataset,
)
from fairseq.data.audio.speech_to_text_joint_dataset import S2TJointDataConfig
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.dataclass.configs import FairseqDataclass
from fairseq.tasks import register_task
from fairseq.tasks.fairseq_task import FairseqTask
from fairseq.dataclass.constants import ChoiceEnum
from fairseq.tasks.hubert_pretraining import HubertPretrainingConfig
from yitrans_iwslt22.data.load_langpair_dataset import load_langpair_dataset
from yitrans_iwslt22.data.lang_pair_mask_dataset import LangPairMaskDataset
from yitrans_iwslt22.data.speech2c_dataset import Speech2cDataset
from yitrans_iwslt22.data.denoising_dataset import DenoisingDatasetLang
from yitrans_iwslt22.data.concat_dataset import ConcatDataset
from yitrans_iwslt22.data.multimodal_corpus_dataset import MultiCorpusDataset
logger = logging.getLogger(__name__)
TOKENIZER_CHOICES = ChoiceEnum(["sentencepiece", "hubert_letters", "none"])
def _lang_token(lang: str):
return "<lang:{}>".format(lang)
def _lang_token_index(dic: Dictionary, lang: str):
"""Return language token index."""
idx = dic.index(_lang_token(lang))
assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang)
return idx
class LabelEncoder(object):
def __init__(self, dictionary: Dictionary) -> None:
self.dictionary = dictionary
def __call__(self, label: str) -> List[str]:
return self.dictionary.encode_line(
label, append_eos=False, add_if_not_exist=False,
)
@dataclass
class TextPretrainingConfig(FairseqDataclass):
"""
Convert the legacy config of BART to the Dataclass style
"""
text_data: Optional[str] = field(
default=None,
metadata={
"help": "if set, path to text data directory",
},
)
seed: Optional[int] = field(
default=1,
metadata={
"help": "for ordered_indices in MulticorpusDataset",
},
)
tokens_per_sample: Optional[int] = field(
default=512,
metadata={
"help": "max number of total tokens over all segments per sample for dataset",
},
)
sample_break_mode: Optional[str] = field(
default="eos",
metadata={
"help": "mode for breaking sentence",
},
)
mask: Optional[float] = field(
default=0.3,
metadata={
"help": "fraction of words/subwords that will be masked",
},
)
leave_unmasked_prob: float = field(
default=0.1,
metadata={"help": "probability that a masked token is unmasked"},
)
mask_random: Optional[float] = field(
default=0.0,
metadata={
"help": "instead of using [MASK], use random token this often",
},
)
freq_weighted_replacement: bool = field(
default=False,
metadata={"help": "sample random replacement words based on word frequencies"},
)
mask_whole_words: bool = field(
default=False,
metadata={"help": "mask whole words; you may also want to set --bpe"},
)
mask_multiple_length: int = field(
default=1,
metadata={"help": "repeat the mask indices multiple times"},
)
mask_stdev: float = field(
default=0.0,
metadata={"help": "stdev of the mask length"},
)
shorten_method: Optional[str] = field(
default="none",
metadata={
"help": "if not none, shorten sequences that exceed tokens_per_sample",
"choices": "none/truncate/random_crop"
},
)
shorten_data_split_list: Optional[str] = field(
default="",
metadata={
"help": "comma_separated list of dataset splits to apply shortening to, e.g., train,valid (default: all dataset splits)",
},
)
### below hypra-parameters is used in BART
insert: Optional[float] = field(
default=0.0,
metadata={
"help": "insert this percentage of additional random tokens",
},
)
permute: Optional[float] = field(
default=0.0,
metadata={
"help": "take this proportion of subwords and permute them",
},
)
rotate: Optional[float] = field(
default=0.0,
metadata={
"help": "rotate this proportion of inputs",
},
)
poisson_lambda: Optional[float] = field(
default=3,
metadata={
"help": "randomly shuffle sentences for this proportion of inputs",
},
)
permute_sentences: Optional[float] = field(
default=0.0,
metadata={
"help": "shuffle this proportion of sentences in all inputs",
},
)
mask_length: Optional[str] = field(
default="span-poisson",
metadata={
"help": "mask length to choose",
"choice": "subword/word/span-poisson"
},
)
replace_length: Optional[int] = field(
default=1,
metadata={
"help": "when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)",
},
)
shuffle_instance: Optional[bool] = field(
default=False,
metadata={"help": "shuffle instance"},
)
max_source_positions: Optional[int] = field(
default=1024,
metadata={"help": "max number of tokens in the source sequence"},
)
max_target_positions: Optional[int] = field(
default=1024,
metadata={"help": "max number of tokens in the target sequence"},
)
bpe: Optional[str] = field(
default="sentencepiece",
metadata={
"help": "will wrapped by the text_data_config yaml",
},
)
data_config: Optional[str] = field(
default=None,
metadata={
"help": "a config yaml specify the bpe model of text data",
},
)
text_maxtokens_ratio: Optional[float] = field(
default=1.0,
metadata={
"help": "for text, max_tokens = max_tokens * text_maxtokens_ratio / 320 ",
},
)
prepend_tgt_lang_tag: bool = field(
default=True,
metadata={"help": "prepend tgt_lang_tag to replace <eos>"},
)
mask_text_ratio: Optional[float] = field(
default=0.0,
metadata={
"help": "mask_text_ratio, for paired data",
},
)
@dataclass
class JointPretrainingConfig(HubertPretrainingConfig):
store_labels: Optional[bool] = field(
default=False,
metadata={"help": "store spm labels in memory, should be true when fine-tune with bpe"},
)
add_decoder: bool = field(
default=False,
metadata={"help": "whether to add decoder for CE Loss on code"},
)
split_modality_batch: bool = field(
default=False,
metadata={"help": "whether create all samples of different modalities in a batch"},
)
speech_tgt_lang: str = field(
default="",
metadata={"help": "prepend <tgt-id> to prev_output_tokens to replace <eos>, only used for decoder"},
)
speech_sampling_alpha: float = field(
default=0.2,
metadata={
"help": "Hyper-parameter alpha = 1/T for temperature-based speech resampling."
"(alpha = 1 for no resampling)"
},
)
text_sampling_alpha: float = field(
default=0.2,
metadata={
"help": "Hyper-parameter alpha = 1/T for temperature-based text resampling."
"(alpha = 1 for no resampling)"
},
)
hubert_tokenizer: Optional[TOKENIZER_CHOICES] = field(
default="none",
metadata={"help": "which tokenizer for processing text"},
)
sp_path: Optional[str] = field(
default=None,
metadata={"help": "sentencepiece model path if using bpe tokenizer"},
)
text_cfg: TextPretrainingConfig = TextPretrainingConfig()
@register_task("iwslt_joint_pretraining", dataclass=JointPretrainingConfig)
class JointPretrainingTask(FairseqTask):
cfg: JointPretrainingConfig
def __init__(
self,
cfg: JointPretrainingConfig,
) -> None:
super().__init__(cfg)
logger.info(f"current directory is {os.getcwd()}")
logger.info(f"JointPretrainingTask Config {cfg}")
self.cfg = cfg
self.fine_tuning = cfg.fine_tuning
self.blank_symbol = "<s>"
self.state.add_factory("hubert_tokenizer", self.build_tokenizer)
self.state.add_factory("text_dictionary", self.load_text_dictionary)
self.state.add_factory("text_src_dictionary", self.load_text_src_dictionary)
if cfg.fine_tuning:
self.state.add_factory("target_dictionary", self.load_dictionaries)
else:
self.state.add_factory("dictionaries", self.load_dictionaries)
if cfg.text_cfg.data_config is not None:
self.text_data_cfg = S2TJointDataConfig(Path(f"{cfg.text_cfg.text_data}/{cfg.text_cfg.data_config}"))
self.cfg.text_cfg.bpe = self.text_data_cfg.bpe_tokenizer["bpe"]
@property
def source_dictionary(self) -> Optional[Dictionary]:
return None
@property
def target_dictionary(self) -> Optional[Dictionary]:
return self.state.target_dictionary
@property
def dictionaries(self) -> List[Dictionary]:
return self.state.dictionaries
@property
def text_dictionary(self) -> Optional[Dictionary]:
return self.state.text_dictionary
@property
def text_src_dictionary(self) -> Optional[Dictionary]:
return self.state.text_src_dictionary
@property
def hubert_tokenizer(self):
return self.state.hubert_tokenizer
def load_dictionaries(self):
label_dir = self.cfg.data if self.cfg.label_dir is None else self.cfg.label_dir
dictionaries = [Dictionary.load(f"{label_dir}/dict.{label}.txt") for label in self.cfg.labels]
return dictionaries[0] if self.cfg.fine_tuning else dictionaries
def load_text_dictionary(self):
tgt_dict_path = f"{self.cfg.text_cfg.text_data}/{self.text_data_cfg.vocab_filename}"
if not os.path.isfile(tgt_dict_path):
raise FileNotFoundError(f"Dict not found: {tgt_dict_path}")
text_dictionary = Dictionary.load(tgt_dict_path)
self.mask_idx = text_dictionary.add_symbol("<mask>")
return text_dictionary
def load_text_src_dictionary(self):
return self.load_text_dictionary()
@classmethod
def setup_task(
cls, cfg: JointPretrainingConfig, **kwargs
) -> "JointPretrainingTask":
return cls(cfg)
def get_label_dir(self) -> str:
if self.cfg.label_dir is None:
return self.cfg.data
return self.cfg.label_dir
def load_dataset(self, split: str, epoch=1, **kwargs) -> None:
"""
Create Wav dataset for audio, and Index dataset for phonemized text,
then concatenate them to by fairseq.data.multi_corpus_dataset.MultiCorpusDataset.
"""
if len(split.split("+")) == 1:
speech_splits = split.split(",")
has_text = False
else:
has_text = True
speech_splits, text_splits = split.split("+")
speech_splits = speech_splits.split(",")
speech_splits = [item for item in speech_splits if item != '']
text_splits = text_splits.split(",")
text_splits = [item for item in text_splits if item != '']
logging.info(f"text_splits: {text_splits}")
logging.info(f"speech_splits: {speech_splits}")
### 1, create a speech dataset using Speech2cDataset (modified from HubertDataset)
dicts = [self.target_dictionary] if self.cfg.fine_tuning else self.dictionaries
pad_list = [dict.pad() for dict in dicts]
eos_list = [dict.eos() for dict in dicts]
procs = [LabelEncoder(dict) for dict in dicts]
if self.cfg.speech_tgt_lang != "":
tgt_lang_idx = _lang_token_index(dicts[0], self.cfg.speech_tgt_lang)
logger.info(f"Will prepend <{tgt_lang_idx}> at the beginning of prev_output_tokens to replace <eos>")
else:
tgt_lang_idx = None
speech_dataset = None
mono_dataset = None
paired_dataset = None
speech_datasets = []
for speech_split in speech_splits:
# hubert v1: pad_audio=True, random_crop=False;
paths = [f"{self.get_label_dir()}/{speech_split}.{l}" for l in self.cfg.labels]
speech_datasets.append(
Speech2cDataset(
f"{self.cfg.data}/{speech_split}.tsv",
sample_rate=self.cfg.sample_rate,
label_paths=paths,
label_rates=self.cfg.label_rate,
pad_list=pad_list,
eos_list=eos_list,
label_processors=procs,
max_keep_sample_size=self.cfg.max_keep_size,
min_keep_sample_size=self.cfg.min_sample_size,
max_sample_size=self.cfg.max_sample_size,
pad_audio=self.cfg.pad_audio,
normalize=self.cfg.normalize,
store_labels=self.cfg.store_labels,
random_crop=self.cfg.random_crop,
single_target=self.cfg.single_target,
tgt_dict=dicts[0],
add_decoder=self.cfg.add_decoder,
fine_tuning=self.cfg.fine_tuning,
tgt_lang_idx=tgt_lang_idx,
tokenizer=self.hubert_tokenizer,
)
)
if len(speech_datasets) > 1:
if 'train' in speech_splits[0] and self.cfg.speech_sampling_alpha != 1.0:
size_ratios = self._get_size_ratios(
speech_splits, [len(s) for s in speech_datasets], alpha=self.cfg.speech_sampling_alpha
)
speech_datasets = [
ResamplingDataset(
d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0)
)
for d, r in zip(speech_datasets, size_ratios)
]
speech_dataset = ConcatDataset(speech_datasets)
elif len(speech_datasets) == 1:
speech_dataset = speech_datasets[0]
### 2, create text mono/paired datasets
logger.info(f"split {split} has unpaired text? {has_text}")
if not has_text:
assert speech_dataset is not None
self.datasets[split] = speech_dataset
return
text_pairs = [ item for item in text_splits if len(item.split(".")[-1].split("-")) > 1 ]
text_monos = [ item for item in text_splits if len(item.split(".")[-1].split("-")) == 1 ]
logging.info(f"text_monos: {text_monos}")
logging.info(f"text_pairs: {text_pairs}")
### 2.1, create text mono dataset using DenoisingDatasetLang
mono_datasets = []
if len(text_monos) > 0:
for text_split in text_monos:
lang = text_split.split('.')[-2] ## e.g. mono_deduped_filt_sort.de_DE.de_DE
mask_whole_words = (
get_whole_word_mask(Namespace(**self.text_data_cfg.bpe_tokenizer), self.text_dictionary)
if self.cfg.text_cfg.mask_whole_words and lang in ("en_XX", "de_DE")
else None
)
mono_dataset = data_utils.load_indexed_dataset(
f"{self.cfg.text_cfg.text_data}/{text_split}",
self.text_dictionary,
combine=True,
)
mono_dataset = StripTokenDataset(mono_dataset, self.text_dictionary.eos())
mono_dataset = maybe_shorten_dataset(
mono_dataset,
"xxxxx",
self.cfg.text_cfg.shorten_data_split_list,
self.cfg.text_cfg.shorten_method,
self.cfg.text_cfg.tokens_per_sample - 2,
self.cfg.text_cfg.seed,
)
logger.info("loaded {} samples from: {}".format(len(mono_dataset), text_split))
### prepend bos and eos to dataset
mono_dataset = PrependTokenDataset(mono_dataset, self.text_dictionary.bos())
mono_dataset = AppendTokenDataset(mono_dataset, self.text_dictionary.eos())
mono_dataset = DenoisingDatasetLang(
mono_dataset,
mono_dataset.sizes,
self.text_dictionary,
self.mask_idx,
mask_whole_words,
shuffle=self.cfg.text_cfg.shuffle_instance,
seed=self.cfg.text_cfg.seed,
args=self.cfg.text_cfg,
tgt_lang_idx=_lang_token_index(self.text_dictionary, lang) if self.cfg.text_cfg.prepend_tgt_lang_tag else None,
)
mono_datasets.append(mono_dataset)
### 2.2, create paired text datasets using load_langpair_dataset
paired_datasets = []
if len(text_pairs) > 0:
for text_pair in text_pairs:
text_split, lp = text_pair.rsplit('.', 1) ## e.g. "mt8corpus.de_DE-en_EN"
src, tgt = lp.split("-")
paired_dataset = load_langpair_dataset(
self.cfg.text_cfg.text_data,
text_split,
src,
self.text_src_dictionary,
tgt,
self.text_dictionary,
combine=True,
dataset_impl=None,
upsample_primary=1,
left_pad_source=False,
left_pad_target=False,
max_source_positions=self.cfg.text_cfg.tokens_per_sample,
max_target_positions=self.cfg.text_cfg.tokens_per_sample,
prepend_bos=False,
load_alignments=False,
append_source_id=True if self.cfg.text_cfg.prepend_tgt_lang_tag else False,
lang_format="<lang:{}>" if self.cfg.text_cfg.prepend_tgt_lang_tag else "[{}]",
)
if self.cfg.text_cfg.mask_text_ratio > 0:
# add mask
noise_token_id = self.text_src_dictionary.index("<mask>")
paired_dataset = LangPairMaskDataset(
paired_dataset,
src_bos=self.text_src_dictionary.bos(),
src_eos=self.text_src_dictionary.eos(),
noise_id=noise_token_id,
mask_ratio=self.cfg.text_cfg.mask_text_ratio,
)
paired_datasets.append(paired_dataset)
### 3rd, compose a MultiCorpusDataset
dataset_dict, max_positions_dict, distributions, max_tokens_ratios = self.resample_multi_modality_dataset(
speech_dataset, mono_datasets, paired_datasets, text_monos, text_pairs, epoch=epoch,
)
self.datasets[split] = MultiCorpusDataset(
dataset_dict,
max_positions=max_positions_dict,
distribution=distributions,
max_tokens_ratio=max_tokens_ratios,
seed=self.cfg.text_cfg.seed,
sort_indices=True,
check_length=False,
)
def max_positions(self) -> Tuple[int, int]:
return (sys.maxsize, sys.maxsize)
def filter_indices_by_size(
self, indices: np.array, *args, **kwargs
) -> np.array:
return indices
def get_batch_iterator(
self,
dataset,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
data_buffer_size=0,
disable_iterator_cache=False,
skip_remainder_batch=False,
grouped_shuffling=False,
update_epoch_batch_itr=False,
):
"""
A warpper of Faiseq.task.get_batch_iterator, only for pre-training, see
https://github.com/facebookresearch/fairseq/blob/main/fairseq/tasks/fairseq_task.py
Returns:
~fairseq.iterators.EpochBatchIterator: a batched iterator over the
given dataset split
"""
if not isinstance(dataset, MultiCorpusDataset):
return super().get_batch_iterator(
dataset,
max_tokens=max_tokens,
max_sentences=max_sentences,
max_positions=max_positions,
ignore_invalid_inputs=ignore_invalid_inputs,
required_batch_size_multiple=required_batch_size_multiple,
seed=seed,
num_shards=num_shards,
shard_id=shard_id,
num_workers=num_workers,
epoch=epoch,
data_buffer_size=data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
skip_remainder_batch=skip_remainder_batch,
grouped_shuffling=grouped_shuffling,
update_epoch_batch_itr=update_epoch_batch_itr,
)
can_reuse_epoch_itr = (
not disable_iterator_cache
and not update_epoch_batch_itr
and self.can_reuse_epoch_itr(dataset)
)
if can_reuse_epoch_itr and dataset in self.dataset_to_epoch_iter:
logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch))
return self.dataset_to_epoch_iter[dataset]
assert isinstance(dataset, FairseqDataset)
# initialize the dataset with the correct starting epoch
dataset.set_epoch(epoch)
# get indices ordered by example size
with data_utils.numpy_seed(seed):
indices = dataset.ordered_indices()
# create mini-batches with given size constraints
batch_sampler = dataset.get_batch_sampler(
indices,
num_shards,
seed,
max_tokens=max_tokens,
max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
split_modality_batch=self.cfg.split_modality_batch,
)
# return a reusable, sharded iterator
epoch_iter = iterators.EpochBatchIterator(
dataset=dataset,
collate_fn=dataset.collater,
batch_sampler=batch_sampler,
seed=seed,
num_shards=num_shards,
shard_id=shard_id,
num_workers=num_workers,
epoch=epoch,
buffer_size=data_buffer_size,
skip_remainder_batch=skip_remainder_batch,
disable_shuffling=True,
grouped_shuffling=grouped_shuffling,
)
if can_reuse_epoch_itr:
self.dataset_to_epoch_iter[dataset] = epoch_iter
return epoch_iter
@classmethod
def _get_size_ratios(cls, ids: List[str], sizes: List[int], alpha: float = 1.0):
"""Size ratios for temperature-based sampling
(https://arxiv.org/abs/1907.05019)"""
_sizes = np.array(sizes)
prob = _sizes / _sizes.sum()
smoothed_prob = prob ** alpha
smoothed_prob = smoothed_prob / smoothed_prob.sum()
size_ratio = (smoothed_prob * _sizes.sum()) / _sizes
o_str = str({_i: f"{prob[i]:.3f}" for i, _i in enumerate(ids)})
logger.info(f"original sampling probability: {o_str}")
p_str = str({_i: f"{smoothed_prob[i]:.3f}" for i, _i in enumerate(ids)})
logger.info(f"balanced sampling probability: {p_str}")
sr_str = str({_id: f"{size_ratio[i]:.3f}" for i, _id in enumerate(ids)})
logger.info(f"balanced sampling size ratio: {sr_str}")
return size_ratio.tolist()
def resample_multi_modality_dataset(self, speech_dataset, mono_datasets, paired_datasets, mono_splits, paired_splits, epoch=1, train=True):
assert len(mono_datasets+paired_datasets) > 0, f"No text data loaded!"
text_datasets = mono_datasets+paired_datasets
if len(text_datasets) > 1 and self.cfg.text_sampling_alpha != 1.0:
size_ratios = self._get_size_ratios(
mono_splits + paired_splits, [len(s) for s in mono_datasets + paired_datasets], alpha=self.cfg.text_sampling_alpha
)
text_datasets = [
ResamplingDataset(
d, size_ratio=r, seed=0, epoch=epoch, replace=(r >= 1.0)
)
for d, r in zip(text_datasets, size_ratios)
]
mono_datasets = text_datasets[:len(mono_datasets)]
paired_datasets = text_datasets[len(mono_datasets):]
dataset_list = [speech_dataset]
for datasets in [mono_datasets, paired_datasets]:
if len(datasets) > 0:
dataset_list.append(ConcatDataset(datasets))
else:
dataset_list.append(None)
### match speech/text datasets according to modality
dataset_dict = OrderedDict((name, d) for name, d in zip(["speech", "text_mono", "text_paired"], dataset_list) if d is not None)
max_positions_dict = OrderedDict((name, None) for name in dataset_dict.keys())
if "text_paired" in dataset_dict:
max_positions_dict["text_paired"] = (self.cfg.text_cfg.tokens_per_sample, self.cfg.text_cfg.tokens_per_sample)
dataset_lens = np.array([len(dataset) for dataset in dataset_dict.values()])
dataset_avg_sample_lens = np.array([
sum([dataset.num_tokens(i) for i in np.random.randint(low=0, high=len(dataset), size=10000)]) / 10000.0
for dataset in dataset_dict.values()
])
max_tokens_ratios = [1.0 / 320 / self.cfg.text_cfg.text_maxtokens_ratio] * len(dataset_dict)
if not "speech" in dataset_dict:
distributions = [l / sum(dataset_lens) for l in dataset_lens]
else:
## we just keep the batches of speech and non-speech the same
first_ratio = dataset_lens[0] / sum(dataset_lens)
distributions = [max_tokens_ratios[0] * dataset_avg_sample_lens[0] / l for l in dataset_avg_sample_lens]
text_total = sum(dataset_lens[1:])
distributions = [1.2 * d * n / text_total for d, n in zip(distributions, dataset_lens)]
max_tokens_ratios[0] = 1.0
distributions[0] = 1.0
distributions = [first_ratio * d for d in distributions]
logging.info(f"Number samples of datasets is {dataset_lens}")
logging.info(f"Avg sample length of datasets is {dataset_avg_sample_lens}")
logging.info(f"Sampling distributions is {distributions}")
logging.info(f"Maxtokens ratio is {max_tokens_ratios}")
return dataset_dict, max_positions_dict, distributions, max_tokens_ratios
def build_tokenizer(self, cfg=None):
logger.info(f"tokenizer: {self.cfg.hubert_tokenizer}")
if self.cfg.hubert_tokenizer != "none":
return encoders.build_bpe(Namespace(**{"bpe": self.cfg.hubert_tokenizer, "sentencepiece_model": self.cfg.sp_path}))
else:
return None