amupd's picture
SpeechT5 upload
62e9ca6
raw
history blame
14.2 kB
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
import logging
import contextlib
from argparse import Namespace
from typing import Any, Optional
import torch
import torch.nn as nn
from dataclasses import dataclass, field
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model
from fairseq.models.hubert.hubert import MASKING_DISTRIBUTION_CHOICES
from fairseq.tasks import FairseqTask
from omegaconf import II, MISSING
from fairseq.models.hubert.hubert_asr import HubertCtcConfig
from fairseq.models.transformer import TransformerConfig
logger = logging.getLogger(__name__)
@dataclass
class HubertMTConfig(HubertCtcConfig):
use_rel_pos_enc: bool = field(
default=True,
metadata={"help": "whether to use relative positional encoding"},
)
# for decoder
decoder_layerdrop: float = field(
default=0.1,
metadata={"help": "probability of dropping a decoder layer in hubert"},
)
add_decoder: bool = field(
default=False,
metadata={"help": "whether to add decoder for CE Loss on code"},
)
reuse_text_emb: bool = field(
default=False,
metadata={"help": "reuse text token embeddings instead of initialize randomly"},
)
freeze_decoder_updates: int = field(
default=0,
metadata={"help": "dont finetune hubert for this many updates"},
)
share_decoder_input_output_embed: bool = field(
default=False,
metadata={"help": "share decoder input and output embeddings"},
)
share_enc_dec_embeddings: bool = field(
default=False,
metadata={"help": "share embeddings of (text encoder, text decoder)"},
)
share_s2t_t2t_embeddings: bool = field(
default=False,
metadata={"help": "share embeddings of (speech2text(code), text2text)"},
)
share_ctc_decoder_embed: bool = field(
default=False,
metadata={"help": "share ctc and decoder embedding (only when share_decoder_input_output_embed is true)"},
)
enc_grad_mult: float = field(
default=1.0,
metadata={"help": "reset feature grad mult in hubert to this (only for st2t)"},
)
retain_dict_path: Optional[str] = field(
default=None,
metadata={"help": "delete embeddings according to this path"},
)
load_pretrained_mbart_from: Optional[str] = field(
default=None,
metadata={
"help": "model to take text encoder decoder weights from (for initialization)"
},
)
text_transformer_encoder_layers: int = field(
default=12,
metadata={"help": "reset text_transformer_encoder_layers"},
)
@register_model("finetune_mt", dataclass=HubertMTConfig)
class YitransMT(BaseFairseqModel):
def __init__(self, cfg: HubertMTConfig, w2v_encoder: BaseFairseqModel):
super().__init__()
self.cfg = cfg
self.w2v_encoder = w2v_encoder
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
@classmethod
def build_model(cls, cfg: HubertMTConfig, task: FairseqTask):
"""Build a new model instance."""
w2v_encoder = HubertEncoder(cfg, task.target_dictionary)
return cls(cfg, w2v_encoder)
def get_normalized_probs(self, net_output, log_probs, sample=None):
"""Get normalized probabilities (or log probs) from a net's output."""
if "decoder_out" in net_output:
return self.w2v_encoder.get_normalized_probs_decoder(net_output["decoder_out"], log_probs, sample)
assert "encoder_out" not in net_output
if "encoder_out" not in net_output:
return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample)
def get_logits(self, net_output):
logits = net_output["encoder_out"]
padding = net_output["encoder_padding_mask"]
if padding is not None and padding.any():
padding = padding.T
logits[padding][..., 0] = 0
logits[padding][..., 1:] = float("-inf")
return logits
def forward(self, **kwargs):
x = self.w2v_encoder(**kwargs)
return x
@property
def encoder(self):
return self.w2v_encoder
def reorder_encoder_out(self, encoder_out, new_order):
return self.encoder.reorder_encoder_out(encoder_out, new_order)
@property
def decoder(self):
return self.w2v_encoder.w2v_model.decoder
class HubertEncoder(FairseqEncoder):
def __init__(self, cfg: HubertMTConfig, tgt_dict=None):
self.apply_mask = cfg.apply_mask
arg_overrides = {
"dropout": cfg.dropout,
"activation_dropout": cfg.activation_dropout,
"dropout_input": cfg.dropout_input,
"attention_dropout": cfg.attention_dropout,
"mask_length": cfg.mask_length,
"mask_prob": cfg.mask_prob,
"mask_selection": cfg.mask_selection,
"mask_other": cfg.mask_other,
"no_mask_overlap": cfg.no_mask_overlap,
"mask_channel_length": cfg.mask_channel_length,
"mask_channel_prob": cfg.mask_channel_prob,
"mask_channel_selection": cfg.mask_channel_selection,
"mask_channel_other": cfg.mask_channel_other,
"no_mask_channel_overlap": cfg.no_mask_channel_overlap,
"encoder_layerdrop": cfg.layerdrop,
"decoder_layerdrop": cfg.decoder_layerdrop,
"feature_grad_mult": cfg.feature_grad_mult,
"decoder_dict_size": -1,
"add_text_modality": True,
"add_text_encoder": True,
"load_pretrained_mbart_from": None,
"load_pretrained_w2v_from": None,
"text_transformer": {
"encoder":{
"layers": cfg.text_transformer_encoder_layers,
"layerdrop": cfg.layerdrop,
},
'dropout': cfg.dropout,
'attention_dropout': cfg.attention_dropout,
'activation_dropout': cfg.activation_dropout,
}
}
if cfg.no_pretrained_weights:
arg_overrides["use_rel_pos_enc"] = cfg.use_rel_pos_enc
arg_overrides["share_enc_dec_embeddings"] = cfg.share_enc_dec_embeddings
arg_overrides["share_s2t_t2t_embeddings"] = cfg.share_s2t_t2t_embeddings
if cfg.w2v_args is None:
state = checkpoint_utils.load_checkpoint_to_cpu(
cfg.w2v_path, arg_overrides
)
w2v_args = state.get("cfg", None)
if w2v_args is None:
w2v_args = convert_namespace_to_omegaconf(state["args"])
cfg.w2v_args = w2v_args
else:
state = None
w2v_args = cfg.w2v_args
if isinstance(w2v_args, Namespace):
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)
# logger.info("---------------------state.keys()-------------------------------------------")
# logger.info(state.keys())
# logger.info("---------------------w2v_args.task-------------------------------------------")
# logger.info(w2v_args.task)
# logger.info("---------------------w2v_args.model-------------------------------------------")
# logger.info(w2v_args.model)
# logger.info("----------------------------------------------------------------")
w2v_args.task.data = cfg.data
w2v_args.task.text_cfg.text_data = cfg.data
w2v_args.task.text_cfg.data_config = None
task = tasks.setup_task(w2v_args.task)
if state is not None and "task_state" in state:
# This will load the stored "dictionaries" object
task.load_state_dict(state["task_state"])
model = task.build_model(w2v_args.model)
### load mbart if specificed
if cfg.load_pretrained_mbart_from is not None and cfg.no_pretrained_weights:
logger.info("Loading mbart....")
mbart_model_state = model.load_checkpoint(cfg.load_pretrained_mbart_from)
model.text_encoder = model.load_pretrained_component_from_model(
component=model.text_encoder, state=mbart_model_state
)
model.decoder = model.load_pretrained_component_from_model(
component=model.decoder, state=mbart_model_state
)
if state is not None and not cfg.no_pretrained_weights:
logger.info("Loading pre-trained models....")
model.load_state_dict(state["model"], strict=True)
### remove_pretraining_modules model.remove_pretraining_modules()
model.target_glu = None
model.final_proj = None
model.feature_extractor = None
model.post_extract_proj = None
model.encoder = None
dropout_keys = [ n for n in w2v_args.model.text_transformer if n.find("drop") >= 0 ]
for key in dropout_keys:
logger.info(f"{key}: {w2v_args.model.text_transformer[key]}")
super().__init__(task.source_dictionary)
d = w2v_args.model.encoder_embed_dim
self.w2v_model = model
self.final_dropout = nn.Dropout(cfg.final_dropout)
self.freeze_finetune_updates = cfg.freeze_finetune_updates
self.freeze_decoder_updates = cfg.freeze_decoder_updates
self.num_updates = 0
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
def forward(self, src_tokens, src_lengths, prev_output_tokens, tbc=True, **kwargs):
# ft = self.freeze_finetune_updates <= self.num_updates
w2v_args = {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"mask": self.apply_mask and self.training,
"prev_output_tokens": prev_output_tokens,
}
results = self.w2v_model(**w2v_args)
return results
def get_normalized_probs_decoder(self, net_output, log_probs, sample=None):
# net_output['encoder_out'] is a (B, T, D) tensor
return self.w2v_model.get_normalized_probs(net_output, log_probs, sample)
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out["encoder_out"] is not None:
if isinstance(encoder_out["encoder_out"], list):
encoder_out["encoder_out"] = (
[] if len(encoder_out["encoder_out"]) == 0
else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
)
else:
encoder_out["encoder_out"] = encoder_out[
"encoder_out"
].index_select(1, new_order)
if encoder_out["encoder_padding_mask"] is not None:
if isinstance(encoder_out["encoder_padding_mask"], list):
encoder_out["encoder_padding_mask"] = (
[] if len(encoder_out["encoder_padding_mask"]) == 0
else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
)
else:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(0, new_order)
if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None:
if isinstance(encoder_out["decoder_out"], list):
encoder_out["decoder_out"] = (
[] if len(encoder_out["decoder_out"]) == 0
else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]]
)
else:
encoder_out["decoder_out"] = encoder_out[
"decoder_out"
].index_select(0, new_order)
if "encoder_out_for_ctc" in encoder_out and encoder_out["encoder_out_for_ctc"] is not None:
if isinstance(encoder_out["encoder_out_for_ctc"], list):
encoder_out["encoder_out_for_ctc"] = (
[] if len(encoder_out["encoder_out_for_ctc"]) == 0
else [x.index_select(1, new_order) for x in encoder_out["encoder_out_for_ctc"]]
)
else:
encoder_out["encoder_out_for_ctc"] = encoder_out[
"encoder_out_for_ctc"
].index_select(1, new_order)
return encoder_out
def forward_torchscript(self, net_input):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
encoder_out = self.w2v_model.forward_torchscript(net_input)
if "encoder_out_for_ctc" in encoder_out:
del encoder_out['encoder_out_for_ctc']
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return None
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m