Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777) | |
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Based on fairseq code bases | |
# https://github.com/facebookresearch/fairseq | |
# -------------------------------------------------------- | |
import math | |
from argparse import Namespace | |
from dataclasses import dataclass, field | |
from omegaconf import II | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from fairseq import metrics, utils | |
from fairseq.criterions import FairseqCriterion, register_criterion | |
from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss | |
from fairseq.data.data_utils import post_process | |
from fairseq.tasks import FairseqTask | |
from fairseq.logging.meters import safe_round | |
from yitrans_iwslt22.criterions.ctc_ce import CtcCeCriterionConfig | |
class JointStep2CriterionConfig(CtcCeCriterionConfig): | |
pass | |
class JointStep2Criterion(FairseqCriterion): | |
def __init__(self, cfg: JointStep2CriterionConfig, task: FairseqTask): | |
super().__init__(task) | |
self.blank_idx = ( | |
task.target_dictionary.index(task.blank_symbol) | |
if hasattr(task, "blank_symbol") | |
else 0 | |
) | |
self.pad_idx = task.target_dictionary.pad() | |
self.eos_idx = task.target_dictionary.eos() | |
self.post_process = cfg.post_process | |
if cfg.wer_args is not None: | |
( | |
cfg.wer_kenlm_model, | |
cfg.wer_lexicon, | |
cfg.wer_lm_weight, | |
cfg.wer_word_score, | |
) = eval(cfg.wer_args) | |
if cfg.wer_kenlm_model is not None: | |
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder | |
dec_args = Namespace() | |
dec_args.nbest = 1 | |
dec_args.criterion = "ctc" | |
dec_args.kenlm_model = cfg.wer_kenlm_model | |
dec_args.lexicon = cfg.wer_lexicon | |
dec_args.beam = 50 | |
dec_args.beam_size_token = min(50, len(task.target_dictionary)) | |
dec_args.beam_threshold = min(50, len(task.target_dictionary)) | |
dec_args.lm_weight = cfg.wer_lm_weight | |
dec_args.word_score = cfg.wer_word_score | |
dec_args.unk_weight = -math.inf | |
dec_args.sil_weight = 0 | |
self.w2l_decoder = W2lKenLMDecoder(dec_args, task.target_dictionary) | |
else: | |
self.w2l_decoder = None | |
self.zero_infinity = cfg.zero_infinity | |
self.sentence_avg = cfg.sentence_avg | |
self.dec_weight = cfg.dec_weight | |
self.report_accuracy = cfg.report_accuracy | |
self.ignore_prefix_size = cfg.ignore_prefix_size | |
self.eps = cfg.label_smoothing | |
def forward(self, model, sample, reduce=True): | |
text_type = [name for name in sample.keys() if name.startswith("text")] | |
logging_output = {} | |
if "speech" in sample.keys(): | |
assert len(text_type) == 0 | |
sample = sample["speech"] | |
sample["modality"] = "speech" | |
net_output = model(**sample["net_input"]) | |
lprobs = model.get_normalized_probs( | |
net_output, log_probs=True | |
).contiguous() # (T, B, C) from the encoder | |
if "src_lengths" in sample["net_input"]: | |
input_lengths = sample["net_input"]["src_lengths"] | |
else: | |
if net_output["padding_mask"] is not None: | |
non_padding_mask = ~net_output["padding_mask"] | |
input_lengths = non_padding_mask.long().sum(-1) | |
else: | |
input_lengths = lprobs.new_full( | |
(lprobs.size(1),), lprobs.size(0), dtype=torch.long | |
) | |
pad_mask = (sample["target"] != self.pad_idx) & ( | |
sample["target"] != self.eos_idx | |
) | |
targets_flat = sample["target"].masked_select(pad_mask) | |
if "target_lengths" in sample: | |
target_lengths = sample["target_lengths"] | |
else: | |
target_lengths = pad_mask.sum(-1) | |
with torch.backends.cudnn.flags(enabled=False): | |
loss = F.ctc_loss( | |
lprobs, | |
targets_flat, | |
input_lengths, | |
target_lengths, | |
blank=self.blank_idx, | |
reduction="sum", | |
zero_infinity=self.zero_infinity, | |
) | |
ntokens = ( | |
sample["ntokens"] if "ntokens" in sample else target_lengths.sum().item() | |
) | |
sample_size = sample["target"].size(0) if self.sentence_avg else ntokens | |
if "decoder_target" in sample: | |
if net_output["decoder_out"] is not None: | |
dec_sample_size = sample["target"].size(0) if self.sentence_avg else sample["dec_ntokens"] | |
dec_loss, dec_nll_loss = self.compute_ce_loss(model, net_output["decoder_out"], sample, reduce=reduce) | |
logging_output["ctc_loss"] = loss.item() | |
loss = (1 - self.dec_weight) * loss + (self.dec_weight * dec_loss * sample_size / dec_sample_size) | |
logging_output["dec_loss"] = dec_loss.item() | |
logging_output["dec_nll_loss"] = dec_nll_loss.item() | |
logging_output["dec_sample_size"] = dec_sample_size | |
if self.report_accuracy: | |
n_correct, total = self.compute_accuracy(model, net_output["decoder_out"], sample) | |
logging_output["dec_n_correct"] = utils.item(n_correct.data) | |
logging_output["total"] = utils.item(total.data) | |
else: | |
logging_output["ctc_loss"] = loss.item() | |
loss = (1 - self.dec_weight) * loss | |
logging_output["dec_loss"] = 0 | |
logging_output["dec_nll_loss"] = 0 | |
logging_output["dec_sample_size"] = 1 | |
if self.report_accuracy: | |
logging_output["dec_n_correct"] = 0 | |
logging_output["total"] = 1 | |
loss = loss / sample_size | |
logging_output["speech_sample_size"] = sample_size | |
else: | |
assert len(text_type) == 1 | |
text_type = text_type[0] | |
text_sample = sample[text_type] | |
text_sample["modality"] = "text" | |
### 2. do text forward and loss computation | |
text_net_output = model(**text_sample["net_input"]) | |
text_dec_loss, text_dec_nll_loss = self.compute_ce_loss(model, text_net_output["decoder_out"], text_sample, reduce=reduce) | |
text_sample_size = text_sample["target"].size(0) if self.sentence_avg else text_sample["ntokens"] | |
loss = text_dec_loss | |
logging_output["text_dec_loss"] = text_dec_loss.item() | |
logging_output["text_dec_nll_loss"] = text_dec_nll_loss.item() | |
logging_output["text_sample_size"] = text_sample_size | |
loss = loss / text_sample_size | |
sample = text_sample | |
ntokens = text_sample["ntokens"] | |
if self.report_accuracy: | |
n_correct, total = self.compute_accuracy(model, text_net_output["decoder_out"], text_sample) | |
logging_output["text_dec_n_correct"] = utils.item(n_correct.data) | |
logging_output["text_total"] = utils.item(total.data) | |
logging_output = { | |
"loss": utils.item(loss.data), # * sample['ntokens'], | |
"ntokens": ntokens, | |
"nsentences": sample["id"].numel(), | |
"sample_size": 1, | |
**logging_output, | |
} | |
if not model.training and self.dec_weight < 1.0 and "speech" in sample.keys(): | |
import editdistance | |
with torch.no_grad(): | |
lprobs_t = lprobs.transpose(0, 1).float().contiguous().cpu() | |
c_err = 0 | |
c_len = 0 | |
w_errs = 0 | |
w_len = 0 | |
wv_errs = 0 | |
for lp, t, inp_l in zip( | |
lprobs_t, | |
sample["target_label"] | |
if "target_label" in sample | |
else sample["target"], | |
input_lengths, | |
): | |
lp = lp[:inp_l].unsqueeze(0) | |
decoded = None | |
if self.w2l_decoder is not None: | |
decoded = self.w2l_decoder.decode(lp) | |
if len(decoded) < 1: | |
decoded = None | |
else: | |
decoded = decoded[0] | |
if len(decoded) < 1: | |
decoded = None | |
else: | |
decoded = decoded[0] | |
p = (t != self.task.target_dictionary.pad()) & ( | |
t != self.task.target_dictionary.eos() | |
) | |
targ = t[p] | |
targ_units = self.task.target_dictionary.string(targ) | |
targ_units_arr = targ.tolist() | |
toks = lp.argmax(dim=-1).unique_consecutive() | |
pred_units_arr = toks[toks != self.blank_idx].tolist() | |
c_err += editdistance.eval(pred_units_arr, targ_units_arr) | |
c_len += len(targ_units_arr) | |
targ_words = post_process(targ_units, self.post_process).split() | |
pred_units = self.task.target_dictionary.string(pred_units_arr) | |
pred_words_raw = post_process(pred_units, self.post_process).split() | |
if decoded is not None and "words" in decoded: | |
pred_words = decoded["words"] | |
w_errs += editdistance.eval(pred_words, targ_words) | |
wv_errs += editdistance.eval(pred_words_raw, targ_words) | |
else: | |
dist = editdistance.eval(pred_words_raw, targ_words) | |
w_errs += dist | |
wv_errs += dist | |
w_len += len(targ_words) | |
logging_output["wv_errors"] = wv_errs | |
logging_output["w_errors"] = w_errs | |
logging_output["w_total"] = w_len | |
logging_output["c_errors"] = c_err | |
logging_output["c_total"] = c_len | |
return loss, 1, logging_output | |
def compute_ce_loss(self, model, net_output, sample, reduce=True): | |
lprobs, target = self.get_lprobs_and_target(model, net_output, sample) | |
loss, nll_loss = label_smoothed_nll_loss( | |
lprobs, | |
target, | |
self.eps, | |
ignore_index=self.pad_idx, | |
reduce=reduce, | |
) | |
return loss, nll_loss | |
def compute_accuracy(self, model, net_output, sample): | |
lprobs, target = self.get_lprobs_and_target(model, net_output, sample) | |
mask = target.ne(self.pad_idx) | |
n_correct = torch.sum( | |
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) | |
) | |
total = torch.sum(mask) | |
return n_correct, total | |
def get_lprobs_and_target(self, model, net_output, sample): | |
lprobs = model.get_normalized_probs(net_output, log_probs=True) | |
if sample["modality"] == "speech": | |
target = sample["decoder_target"] | |
if self.ignore_prefix_size > 0: | |
if getattr(lprobs, "batch_first", False): | |
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() | |
target = target[:, self.ignore_prefix_size :].contiguous() | |
else: | |
lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous() | |
target = target[self.ignore_prefix_size :, :].contiguous() | |
else: | |
target = sample["target"] | |
return lprobs.view(-1, lprobs.size(-1)), target.view(-1) | |
def reduce_metrics(logging_outputs) -> None: | |
"""Aggregate logging outputs from data parallel training.""" | |
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) | |
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs)) | |
nsentences = utils.item( | |
sum(log.get("nsentences", 0) for log in logging_outputs) | |
) | |
sample_size = utils.item( | |
sum(log.get("sample_size", 0) for log in logging_outputs) | |
) | |
metrics.log_scalar( | |
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3 | |
) | |
metrics.log_scalar("ntokens", ntokens) | |
metrics.log_scalar("nsentences", nsentences) | |
if sample_size != ntokens: | |
metrics.log_scalar( | |
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 | |
) | |
c_errors = sum(log.get("c_errors", 0) for log in logging_outputs) | |
metrics.log_scalar("_c_errors", c_errors) | |
c_total = sum(log.get("c_total", 0) for log in logging_outputs) | |
metrics.log_scalar("_c_total", c_total) | |
w_errors = sum(log.get("w_errors", 0) for log in logging_outputs) | |
metrics.log_scalar("_w_errors", w_errors) | |
wv_errors = sum(log.get("wv_errors", 0) for log in logging_outputs) | |
metrics.log_scalar("_wv_errors", wv_errors) | |
w_total = sum(log.get("w_total", 0) for log in logging_outputs) | |
metrics.log_scalar("_w_total", w_total) | |
if c_total > 0: | |
metrics.log_derived( | |
"uer", | |
lambda meters: safe_round( | |
meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3 | |
) | |
if meters["_c_total"].sum > 0 | |
else float("nan"), | |
) | |
if w_total > 0: | |
metrics.log_derived( | |
"wer", | |
lambda meters: safe_round( | |
meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3 | |
) | |
if meters["_w_total"].sum > 0 | |
else float("nan"), | |
) | |
metrics.log_derived( | |
"raw_wer", | |
lambda meters: safe_round( | |
meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3 | |
) | |
if meters["_w_total"].sum > 0 | |
else float("nan"), | |
) | |
if "dec_loss" in logging_outputs[0]: | |
ctc_loss_sum = sum(log.get("ctc_loss", 0) for log in logging_outputs) | |
dec_loss_sum = sum(log.get("dec_loss", 0) for log in logging_outputs) | |
dec_nll_loss_sum = sum(log.get("dec_nll_loss", 0) for log in logging_outputs) | |
dec_sample_size = sum(log.get("dec_sample_size", 0) for log in logging_outputs) | |
metrics.log_scalar( | |
"dec_loss", dec_loss_sum / dec_sample_size / math.log(2), dec_sample_size, round=3 | |
) | |
metrics.log_scalar( | |
"ctc_loss", ctc_loss_sum / sample_size / math.log(2), sample_size, round=3 | |
) | |
metrics.log_scalar( | |
"dec_nll_loss", dec_nll_loss_sum / dec_sample_size / math.log(2), dec_sample_size, round=3 | |
) | |
metrics.log_derived( | |
"dec_ppl", lambda meters: utils.get_perplexity(meters["dec_nll_loss"].avg) | |
) | |
total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) | |
if total > 0: | |
metrics.log_scalar("total", total) | |
n_correct = utils.item( | |
sum(log.get("dec_n_correct", 0) for log in logging_outputs) | |
) | |
metrics.log_scalar("dec_n_correct", n_correct) | |
metrics.log_derived( | |
"dec_accuracy", | |
lambda meters: round( | |
meters["dec_n_correct"].sum * 100.0 / meters["total"].sum, 3 | |
) | |
if meters["total"].sum > 0 | |
else float("nan"), | |
) | |
# if "text_dec_loss" in logging_outputs[0]: | |
if any("text_dec_loss" in logging_output for logging_output in logging_outputs): | |
text_dec_loss_sum = sum(log.get("text_dec_loss", 0) for log in logging_outputs) | |
text_dec_nll_loss_sum = sum(log.get("text_dec_nll_loss", 0) for log in logging_outputs) | |
text_sample_size = sum(log.get("text_sample_size", 0) for log in logging_outputs) | |
metrics.log_scalar( | |
"text_dec_loss", text_dec_loss_sum / text_sample_size / math.log(2), text_sample_size, round=3 | |
) | |
metrics.log_scalar( | |
"text_dec_nll_loss", text_dec_nll_loss_sum / text_sample_size / math.log(2), text_sample_size, round=3 | |
) | |
metrics.log_derived( | |
"text_dec_ppl", lambda meters: utils.get_perplexity(meters["text_dec_nll_loss"].avg) | |
) | |
text_total = utils.item(sum(log.get("text_total", 0) for log in logging_outputs)) | |
if text_total > 0: | |
metrics.log_scalar("text_total", text_total) | |
text_n_correct = utils.item( | |
sum(log.get("text_dec_n_correct", 0) for log in logging_outputs) | |
) | |
metrics.log_scalar("text_dec_n_correct", text_n_correct) | |
metrics.log_derived( | |
"text_dec_accuracy", | |
lambda meters: round( | |
meters["text_dec_n_correct"].sum * 100.0 / meters["text_total"].sum, 3 | |
) | |
if meters["text_total"].sum > 0 | |
else float("nan"), | |
) | |
def logging_outputs_can_be_summed() -> bool: | |
""" | |
Whether the logging outputs returned by `forward` can be summed | |
across workers prior to calling `reduce_metrics`. Setting this | |
to True will improves distributed training speed. | |
""" | |
return False | |