amupd's picture
SpeechT5 upload
62e9ca6
raw
history blame
18.5 kB
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
import math
from argparse import Namespace
from dataclasses import dataclass, field
from omegaconf import II
from typing import Optional
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss
from fairseq.data.data_utils import post_process
from fairseq.tasks import FairseqTask
from fairseq.logging.meters import safe_round
from yitrans_iwslt22.criterions.ctc_ce import CtcCeCriterionConfig
@dataclass
class JointStep2CriterionConfig(CtcCeCriterionConfig):
pass
@register_criterion("joint_step2", dataclass=JointStep2CriterionConfig)
class JointStep2Criterion(FairseqCriterion):
def __init__(self, cfg: JointStep2CriterionConfig, task: FairseqTask):
super().__init__(task)
self.blank_idx = (
task.target_dictionary.index(task.blank_symbol)
if hasattr(task, "blank_symbol")
else 0
)
self.pad_idx = task.target_dictionary.pad()
self.eos_idx = task.target_dictionary.eos()
self.post_process = cfg.post_process
if cfg.wer_args is not None:
(
cfg.wer_kenlm_model,
cfg.wer_lexicon,
cfg.wer_lm_weight,
cfg.wer_word_score,
) = eval(cfg.wer_args)
if cfg.wer_kenlm_model is not None:
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
dec_args = Namespace()
dec_args.nbest = 1
dec_args.criterion = "ctc"
dec_args.kenlm_model = cfg.wer_kenlm_model
dec_args.lexicon = cfg.wer_lexicon
dec_args.beam = 50
dec_args.beam_size_token = min(50, len(task.target_dictionary))
dec_args.beam_threshold = min(50, len(task.target_dictionary))
dec_args.lm_weight = cfg.wer_lm_weight
dec_args.word_score = cfg.wer_word_score
dec_args.unk_weight = -math.inf
dec_args.sil_weight = 0
self.w2l_decoder = W2lKenLMDecoder(dec_args, task.target_dictionary)
else:
self.w2l_decoder = None
self.zero_infinity = cfg.zero_infinity
self.sentence_avg = cfg.sentence_avg
self.dec_weight = cfg.dec_weight
self.report_accuracy = cfg.report_accuracy
self.ignore_prefix_size = cfg.ignore_prefix_size
self.eps = cfg.label_smoothing
def forward(self, model, sample, reduce=True):
text_type = [name for name in sample.keys() if name.startswith("text")]
logging_output = {}
if "speech" in sample.keys():
assert len(text_type) == 0
sample = sample["speech"]
sample["modality"] = "speech"
net_output = model(**sample["net_input"])
lprobs = model.get_normalized_probs(
net_output, log_probs=True
).contiguous() # (T, B, C) from the encoder
if "src_lengths" in sample["net_input"]:
input_lengths = sample["net_input"]["src_lengths"]
else:
if net_output["padding_mask"] is not None:
non_padding_mask = ~net_output["padding_mask"]
input_lengths = non_padding_mask.long().sum(-1)
else:
input_lengths = lprobs.new_full(
(lprobs.size(1),), lprobs.size(0), dtype=torch.long
)
pad_mask = (sample["target"] != self.pad_idx) & (
sample["target"] != self.eos_idx
)
targets_flat = sample["target"].masked_select(pad_mask)
if "target_lengths" in sample:
target_lengths = sample["target_lengths"]
else:
target_lengths = pad_mask.sum(-1)
with torch.backends.cudnn.flags(enabled=False):
loss = F.ctc_loss(
lprobs,
targets_flat,
input_lengths,
target_lengths,
blank=self.blank_idx,
reduction="sum",
zero_infinity=self.zero_infinity,
)
ntokens = (
sample["ntokens"] if "ntokens" in sample else target_lengths.sum().item()
)
sample_size = sample["target"].size(0) if self.sentence_avg else ntokens
if "decoder_target" in sample:
if net_output["decoder_out"] is not None:
dec_sample_size = sample["target"].size(0) if self.sentence_avg else sample["dec_ntokens"]
dec_loss, dec_nll_loss = self.compute_ce_loss(model, net_output["decoder_out"], sample, reduce=reduce)
logging_output["ctc_loss"] = loss.item()
loss = (1 - self.dec_weight) * loss + (self.dec_weight * dec_loss * sample_size / dec_sample_size)
logging_output["dec_loss"] = dec_loss.item()
logging_output["dec_nll_loss"] = dec_nll_loss.item()
logging_output["dec_sample_size"] = dec_sample_size
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, net_output["decoder_out"], sample)
logging_output["dec_n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
else:
logging_output["ctc_loss"] = loss.item()
loss = (1 - self.dec_weight) * loss
logging_output["dec_loss"] = 0
logging_output["dec_nll_loss"] = 0
logging_output["dec_sample_size"] = 1
if self.report_accuracy:
logging_output["dec_n_correct"] = 0
logging_output["total"] = 1
loss = loss / sample_size
logging_output["speech_sample_size"] = sample_size
else:
assert len(text_type) == 1
text_type = text_type[0]
text_sample = sample[text_type]
text_sample["modality"] = "text"
### 2. do text forward and loss computation
text_net_output = model(**text_sample["net_input"])
text_dec_loss, text_dec_nll_loss = self.compute_ce_loss(model, text_net_output["decoder_out"], text_sample, reduce=reduce)
text_sample_size = text_sample["target"].size(0) if self.sentence_avg else text_sample["ntokens"]
loss = text_dec_loss
logging_output["text_dec_loss"] = text_dec_loss.item()
logging_output["text_dec_nll_loss"] = text_dec_nll_loss.item()
logging_output["text_sample_size"] = text_sample_size
loss = loss / text_sample_size
sample = text_sample
ntokens = text_sample["ntokens"]
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, text_net_output["decoder_out"], text_sample)
logging_output["text_dec_n_correct"] = utils.item(n_correct.data)
logging_output["text_total"] = utils.item(total.data)
logging_output = {
"loss": utils.item(loss.data), # * sample['ntokens'],
"ntokens": ntokens,
"nsentences": sample["id"].numel(),
"sample_size": 1,
**logging_output,
}
if not model.training and self.dec_weight < 1.0 and "speech" in sample.keys():
import editdistance
with torch.no_grad():
lprobs_t = lprobs.transpose(0, 1).float().contiguous().cpu()
c_err = 0
c_len = 0
w_errs = 0
w_len = 0
wv_errs = 0
for lp, t, inp_l in zip(
lprobs_t,
sample["target_label"]
if "target_label" in sample
else sample["target"],
input_lengths,
):
lp = lp[:inp_l].unsqueeze(0)
decoded = None
if self.w2l_decoder is not None:
decoded = self.w2l_decoder.decode(lp)
if len(decoded) < 1:
decoded = None
else:
decoded = decoded[0]
if len(decoded) < 1:
decoded = None
else:
decoded = decoded[0]
p = (t != self.task.target_dictionary.pad()) & (
t != self.task.target_dictionary.eos()
)
targ = t[p]
targ_units = self.task.target_dictionary.string(targ)
targ_units_arr = targ.tolist()
toks = lp.argmax(dim=-1).unique_consecutive()
pred_units_arr = toks[toks != self.blank_idx].tolist()
c_err += editdistance.eval(pred_units_arr, targ_units_arr)
c_len += len(targ_units_arr)
targ_words = post_process(targ_units, self.post_process).split()
pred_units = self.task.target_dictionary.string(pred_units_arr)
pred_words_raw = post_process(pred_units, self.post_process).split()
if decoded is not None and "words" in decoded:
pred_words = decoded["words"]
w_errs += editdistance.eval(pred_words, targ_words)
wv_errs += editdistance.eval(pred_words_raw, targ_words)
else:
dist = editdistance.eval(pred_words_raw, targ_words)
w_errs += dist
wv_errs += dist
w_len += len(targ_words)
logging_output["wv_errors"] = wv_errs
logging_output["w_errors"] = w_errs
logging_output["w_total"] = w_len
logging_output["c_errors"] = c_err
logging_output["c_total"] = c_len
return loss, 1, logging_output
def compute_ce_loss(self, model, net_output, sample, reduce=True):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
loss, nll_loss = label_smoothed_nll_loss(
lprobs,
target,
self.eps,
ignore_index=self.pad_idx,
reduce=reduce,
)
return loss, nll_loss
def compute_accuracy(self, model, net_output, sample):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
mask = target.ne(self.pad_idx)
n_correct = torch.sum(
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
)
total = torch.sum(mask)
return n_correct, total
def get_lprobs_and_target(self, model, net_output, sample):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
if sample["modality"] == "speech":
target = sample["decoder_target"]
if self.ignore_prefix_size > 0:
if getattr(lprobs, "batch_first", False):
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
target = target[:, self.ignore_prefix_size :].contiguous()
else:
lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
target = target[self.ignore_prefix_size :, :].contiguous()
else:
target = sample["target"]
return lprobs.view(-1, lprobs.size(-1)), target.view(-1)
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
nsentences = utils.item(
sum(log.get("nsentences", 0) for log in logging_outputs)
)
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar("ntokens", ntokens)
metrics.log_scalar("nsentences", nsentences)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
c_errors = sum(log.get("c_errors", 0) for log in logging_outputs)
metrics.log_scalar("_c_errors", c_errors)
c_total = sum(log.get("c_total", 0) for log in logging_outputs)
metrics.log_scalar("_c_total", c_total)
w_errors = sum(log.get("w_errors", 0) for log in logging_outputs)
metrics.log_scalar("_w_errors", w_errors)
wv_errors = sum(log.get("wv_errors", 0) for log in logging_outputs)
metrics.log_scalar("_wv_errors", wv_errors)
w_total = sum(log.get("w_total", 0) for log in logging_outputs)
metrics.log_scalar("_w_total", w_total)
if c_total > 0:
metrics.log_derived(
"uer",
lambda meters: safe_round(
meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3
)
if meters["_c_total"].sum > 0
else float("nan"),
)
if w_total > 0:
metrics.log_derived(
"wer",
lambda meters: safe_round(
meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3
)
if meters["_w_total"].sum > 0
else float("nan"),
)
metrics.log_derived(
"raw_wer",
lambda meters: safe_round(
meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3
)
if meters["_w_total"].sum > 0
else float("nan"),
)
if "dec_loss" in logging_outputs[0]:
ctc_loss_sum = sum(log.get("ctc_loss", 0) for log in logging_outputs)
dec_loss_sum = sum(log.get("dec_loss", 0) for log in logging_outputs)
dec_nll_loss_sum = sum(log.get("dec_nll_loss", 0) for log in logging_outputs)
dec_sample_size = sum(log.get("dec_sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"dec_loss", dec_loss_sum / dec_sample_size / math.log(2), dec_sample_size, round=3
)
metrics.log_scalar(
"ctc_loss", ctc_loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"dec_nll_loss", dec_nll_loss_sum / dec_sample_size / math.log(2), dec_sample_size, round=3
)
metrics.log_derived(
"dec_ppl", lambda meters: utils.get_perplexity(meters["dec_nll_loss"].avg)
)
total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
if total > 0:
metrics.log_scalar("total", total)
n_correct = utils.item(
sum(log.get("dec_n_correct", 0) for log in logging_outputs)
)
metrics.log_scalar("dec_n_correct", n_correct)
metrics.log_derived(
"dec_accuracy",
lambda meters: round(
meters["dec_n_correct"].sum * 100.0 / meters["total"].sum, 3
)
if meters["total"].sum > 0
else float("nan"),
)
# if "text_dec_loss" in logging_outputs[0]:
if any("text_dec_loss" in logging_output for logging_output in logging_outputs):
text_dec_loss_sum = sum(log.get("text_dec_loss", 0) for log in logging_outputs)
text_dec_nll_loss_sum = sum(log.get("text_dec_nll_loss", 0) for log in logging_outputs)
text_sample_size = sum(log.get("text_sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"text_dec_loss", text_dec_loss_sum / text_sample_size / math.log(2), text_sample_size, round=3
)
metrics.log_scalar(
"text_dec_nll_loss", text_dec_nll_loss_sum / text_sample_size / math.log(2), text_sample_size, round=3
)
metrics.log_derived(
"text_dec_ppl", lambda meters: utils.get_perplexity(meters["text_dec_nll_loss"].avg)
)
text_total = utils.item(sum(log.get("text_total", 0) for log in logging_outputs))
if text_total > 0:
metrics.log_scalar("text_total", text_total)
text_n_correct = utils.item(
sum(log.get("text_dec_n_correct", 0) for log in logging_outputs)
)
metrics.log_scalar("text_dec_n_correct", text_n_correct)
metrics.log_derived(
"text_dec_accuracy",
lambda meters: round(
meters["text_dec_n_correct"].sum * 100.0 / meters["text_total"].sum, 3
)
if meters["text_total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False