amupd's picture
SpeechT5 upload
62e9ca6
raw
history blame
17.3 kB
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
#
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------
"""
Modified form: https://github.com/facebookresearch/fairseq/blob/272c4c5197250997148fb12c0db6306035f166a4/examples/speech_recognition/new/infer.py
1. add "utils.import_user_module(cfg.common)" so that usr-dir can be loaded
"""
import ast
import hashlib
import logging
import os
import shutil
import sys
from dataclasses import dataclass, field, is_dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import editdistance
import torch
import torch.distributed as dist
import examples
from examples.speech_recognition.new.decoders.decoder_config import (
DecoderConfig,
FlashlightDecoderConfig,
)
from examples.speech_recognition.new.decoders.decoder import Decoder
from fairseq import checkpoint_utils, distributed_utils, progress_bar, tasks, utils
from fairseq.data.data_utils import post_process
from fairseq.dataclass.configs import (
CheckpointConfig,
CommonConfig,
CommonEvalConfig,
DatasetConfig,
DistributedTrainingConfig,
FairseqDataclass,
)
from fairseq.logging.meters import StopwatchMeter, TimeMeter
from fairseq.logging.progress_bar import BaseProgressBar
from fairseq.models.fairseq_model import FairseqModel
from omegaconf import OmegaConf
import hydra
from hydra.core.config_store import ConfigStore
logging.root.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
config_path = Path(examples.speech_recognition.new.__path__[0]).resolve() / "conf"
@dataclass
class DecodingConfig(DecoderConfig, FlashlightDecoderConfig):
unique_wer_file: bool = field(
default=False,
metadata={"help": "If set, use a unique file for storing WER"},
)
results_path: Optional[str] = field(
default=None,
metadata={
"help": "If set, write hypothesis and reference sentences into this directory"
},
)
@dataclass
class InferConfig(FairseqDataclass):
task: Any = None
decoding: DecodingConfig = DecodingConfig()
common: CommonConfig = CommonConfig()
common_eval: CommonEvalConfig = CommonEvalConfig()
checkpoint: CheckpointConfig = CheckpointConfig()
distributed_training: DistributedTrainingConfig = DistributedTrainingConfig()
dataset: DatasetConfig = DatasetConfig()
is_ax: bool = field(
default=False,
metadata={
"help": "if true, assumes we are using ax for tuning and returns a tuple for ax to consume"
},
)
def reset_logging():
root = logging.getLogger()
for handler in root.handlers:
root.removeHandler(handler)
root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper())
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(
logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
)
root.addHandler(handler)
class InferenceProcessor:
cfg: InferConfig
def __init__(self, cfg: InferConfig) -> None:
self.cfg = cfg
self.task = tasks.setup_task(cfg.task)
models, saved_cfg = self.load_model_ensemble()
self.models = models
self.saved_cfg = saved_cfg
self.tgt_dict = self.task.target_dictionary
self.task.load_dataset(
self.cfg.dataset.gen_subset,
task_cfg=saved_cfg.task,
)
self.generator = Decoder(cfg.decoding, self.tgt_dict)
self.gen_timer = StopwatchMeter()
self.wps_meter = TimeMeter()
self.num_sentences = 0
self.total_errors = 0
self.total_length = 0
self.hypo_words_file = None
self.hypo_units_file = None
self.ref_words_file = None
self.ref_units_file = None
self.progress_bar = self.build_progress_bar()
def __enter__(self) -> "InferenceProcessor":
if self.cfg.decoding.results_path is not None:
self.hypo_words_file = self.get_res_file("hypo.word")
self.hypo_units_file = self.get_res_file("hypo.units")
self.ref_words_file = self.get_res_file("ref.word")
self.ref_units_file = self.get_res_file("ref.units")
return self
def __exit__(self, *exc) -> bool:
if self.cfg.decoding.results_path is not None:
self.hypo_words_file.close()
self.hypo_units_file.close()
self.ref_words_file.close()
self.ref_units_file.close()
return False
def __iter__(self) -> Any:
for sample in self.progress_bar:
if not self.cfg.common.cpu:
sample = utils.move_to_cuda(sample)
# Happens on the last batch.
if "net_input" not in sample:
continue
yield sample
def log(self, *args, **kwargs):
self.progress_bar.log(*args, **kwargs)
def print(self, *args, **kwargs):
self.progress_bar.print(*args, **kwargs)
def get_res_file(self, fname: str) -> None:
fname = os.path.join(self.cfg.decoding.results_path, fname)
if self.data_parallel_world_size > 1:
fname = f"{fname}.{self.data_parallel_rank}"
return open(fname, "w", buffering=1)
def merge_shards(self) -> None:
"""Merges all shard files into shard 0, then removes shard suffix."""
shard_id = self.data_parallel_rank
num_shards = self.data_parallel_world_size
if self.data_parallel_world_size > 1:
def merge_shards_with_root(fname: str) -> None:
fname = os.path.join(self.cfg.decoding.results_path, fname)
logger.info("Merging %s on shard %d", fname, shard_id)
base_fpath = Path(f"{fname}.0")
with open(base_fpath, "a") as out_file:
for s in range(1, num_shards):
shard_fpath = Path(f"{fname}.{s}")
with open(shard_fpath, "r") as in_file:
for line in in_file:
out_file.write(line)
shard_fpath.unlink()
shutil.move(f"{fname}.0", fname)
dist.barrier() # ensure all shards finished writing
if shard_id == (0 % num_shards):
merge_shards_with_root("hypo.word")
if shard_id == (1 % num_shards):
merge_shards_with_root("hypo.units")
if shard_id == (2 % num_shards):
merge_shards_with_root("ref.word")
if shard_id == (3 % num_shards):
merge_shards_with_root("ref.units")
dist.barrier()
def optimize_model(self, model: FairseqModel) -> None:
model.make_generation_fast_()
if self.cfg.common.fp16:
model.half()
if not self.cfg.common.cpu:
model.cuda()
def load_model_ensemble(self) -> Tuple[List[FairseqModel], FairseqDataclass]:
arg_overrides = ast.literal_eval(self.cfg.common_eval.model_overrides)
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(self.cfg.common_eval.path, separator="\\"),
arg_overrides=arg_overrides,
task=self.task,
suffix=self.cfg.checkpoint.checkpoint_suffix,
strict=(self.cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=self.cfg.checkpoint.checkpoint_shard_count,
)
for model in models:
self.optimize_model(model)
return models, saved_cfg
def get_dataset_itr(self, disable_iterator_cache: bool = False) -> None:
return self.task.get_batch_iterator(
dataset=self.task.dataset(self.cfg.dataset.gen_subset),
max_tokens=self.cfg.dataset.max_tokens,
max_sentences=self.cfg.dataset.batch_size,
max_positions=(sys.maxsize, sys.maxsize),
ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=self.cfg.common.seed,
num_shards=self.data_parallel_world_size,
shard_id=self.data_parallel_rank,
num_workers=self.cfg.dataset.num_workers,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
).next_epoch_itr(shuffle=False)
def build_progress_bar(
self,
epoch: Optional[int] = None,
prefix: Optional[str] = None,
default_log_format: str = "tqdm",
) -> BaseProgressBar:
return progress_bar.progress_bar(
iterator=self.get_dataset_itr(),
log_format=self.cfg.common.log_format,
log_interval=self.cfg.common.log_interval,
epoch=epoch,
prefix=prefix,
tensorboard_logdir=self.cfg.common.tensorboard_logdir,
default_log_format=default_log_format,
)
@property
def data_parallel_world_size(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 1
return distributed_utils.get_data_parallel_world_size()
@property
def data_parallel_rank(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 0
return distributed_utils.get_data_parallel_rank()
def process_sentence(
self,
sample: Dict[str, Any],
hypo: Dict[str, Any],
sid: int,
batch_id: int,
) -> Tuple[int, int]:
speaker = None # Speaker can't be parsed from dataset.
if "target_label" in sample:
toks = sample["target_label"]
else:
toks = sample["target"]
toks = toks[batch_id, :]
# Processes hypothesis.
hyp_pieces = self.tgt_dict.string(hypo["tokens"].int().cpu())
if "words" in hypo:
hyp_words = " ".join(hypo["words"])
else:
hyp_words = post_process(hyp_pieces, self.cfg.common_eval.post_process)
# Processes target.
target_tokens = utils.strip_pad(toks, self.tgt_dict.pad())
tgt_pieces = self.tgt_dict.string(target_tokens.int().cpu())
tgt_words = post_process(tgt_pieces, self.cfg.common_eval.post_process)
if self.cfg.decoding.results_path is not None:
print(f"{hyp_pieces} ({speaker}-{sid})", file=self.hypo_units_file)
print(f"{hyp_words} ({speaker}-{sid})", file=self.hypo_words_file)
print(f"{tgt_pieces} ({speaker}-{sid})", file=self.ref_units_file)
print(f"{tgt_words} ({speaker}-{sid})", file=self.ref_words_file)
if not self.cfg.common_eval.quiet:
logger.info(f"HYPO: {hyp_words}")
logger.info(f"REF: {tgt_words}")
logger.info("---------------------")
hyp_words, tgt_words = hyp_words.split(), tgt_words.split()
return editdistance.eval(hyp_words, tgt_words), len(tgt_words)
def process_sample(self, sample: Dict[str, Any]) -> None:
self.gen_timer.start()
hypos = self.task.inference_step(
generator=self.generator,
models=self.models,
sample=sample,
)
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
self.gen_timer.stop(num_generated_tokens)
self.wps_meter.update(num_generated_tokens)
for batch_id, sample_id in enumerate(sample["id"].tolist()):
errs, length = self.process_sentence(
sample=sample,
sid=sample_id,
batch_id=batch_id,
hypo=hypos[batch_id][0],
)
self.total_errors += errs
self.total_length += length
self.log({"wps": round(self.wps_meter.avg)})
if "nsentences" in sample:
self.num_sentences += sample["nsentences"]
else:
self.num_sentences += sample["id"].numel()
def log_generation_time(self) -> None:
logger.info(
"Processed %d sentences (%d tokens) in %.1fs %.2f "
"sentences per second, %.2f tokens per second)",
self.num_sentences,
self.gen_timer.n,
self.gen_timer.sum,
self.num_sentences / (self.gen_timer.sum + 1e-6),
1.0 / (self.gen_timer.avg + 1e-6),
)
def parse_wer(wer_file: Path) -> float:
with open(wer_file, "r") as f:
return float(f.readline().strip().split(" ")[1])
def get_wer_file(cfg: InferConfig) -> Path:
"""Hashes the decoding parameters to a unique file ID."""
base_path = "wer"
if cfg.decoding.results_path is not None:
base_path = os.path.join(cfg.decoding.results_path, base_path)
if cfg.decoding.unique_wer_file:
yaml_str = OmegaConf.to_yaml(cfg.decoding)
fid = int(hashlib.md5(yaml_str.encode("utf-8")).hexdigest(), 16)
return Path(f"{base_path}.{fid % 1000000}")
else:
return Path(base_path)
def main(cfg: InferConfig) -> float:
"""Entry point for main processing logic.
Args:
cfg: The inferance configuration to use.
wer: Optional shared memory pointer for returning the WER. If not None,
the final WER value will be written here instead of being returned.
Returns:
The final WER if `wer` is None, otherwise None.
"""
utils.import_user_module(cfg.common)
yaml_str, wer_file = OmegaConf.to_yaml(cfg.decoding), get_wer_file(cfg)
# Validates the provided configuration.
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.max_tokens = 4000000
if not cfg.common.cpu and not torch.cuda.is_available():
raise ValueError("CUDA not found; set `cpu=True` to run without CUDA")
logger.info(cfg.common_eval.path)
with InferenceProcessor(cfg) as processor:
for sample in processor:
processor.process_sample(sample)
processor.log_generation_time()
if cfg.decoding.results_path is not None:
processor.merge_shards()
errs_t, leng_t = processor.total_errors, processor.total_length
if cfg.common.cpu:
logger.warning("Merging WER requires CUDA.")
elif processor.data_parallel_world_size > 1:
stats = torch.LongTensor([errs_t, leng_t]).cuda()
dist.all_reduce(stats, op=dist.ReduceOp.SUM)
errs_t, leng_t = stats[0].item(), stats[1].item()
wer = errs_t * 100.0 / leng_t
if distributed_utils.is_master(cfg.distributed_training):
with open(wer_file, "w") as f:
f.write(
(
f"WER: {wer}\n"
f"err / num_ref_words = {errs_t} / {leng_t}\n\n"
f"{yaml_str}"
)
)
return wer
@hydra.main(config_path=config_path, config_name="infer")
def hydra_main(cfg: InferConfig) -> Union[float, Tuple[float, Optional[float]]]:
container = OmegaConf.to_container(cfg, resolve=True, enum_to_str=True)
cfg = OmegaConf.create(container)
OmegaConf.set_struct(cfg, True)
if cfg.common.reset_logging:
reset_logging()
utils.import_user_module(cfg.common)
# logger.info("Config:\n%s", OmegaConf.to_yaml(cfg))
wer = float("inf")
try:
if cfg.common.profile:
with torch.cuda.profiler.profile():
with torch.autograd.profiler.emit_nvtx():
distributed_utils.call_main(cfg, main)
else:
distributed_utils.call_main(cfg, main)
wer = parse_wer(get_wer_file(cfg))
except BaseException as e: # pylint: disable=broad-except
if not cfg.common.suppress_crashes:
raise
else:
logger.error("Crashed! %s", str(e))
logger.info("Word error rate: %.4f", wer)
if cfg.is_ax:
return wer, None
return wer
def cli_main() -> None:
try:
from hydra._internal.utils import (
get_args,
) # pylint: disable=import-outside-toplevel
cfg_name = get_args().config_name or "infer"
except ImportError:
logger.warning("Failed to get config name from hydra args")
cfg_name = "infer"
cs = ConfigStore.instance()
cs.store(name=cfg_name, node=InferConfig)
for k in InferConfig.__dataclass_fields__:
if is_dataclass(InferConfig.__dataclass_fields__[k].type):
v = InferConfig.__dataclass_fields__[k].default
cs.store(name=k, node=v)
hydra_main() # pylint: disable=no-value-for-parameter
if __name__ == "__main__":
cli_main()