amupd's picture
SpeechT5 upload
62e9ca6
raw
history blame
13.4 kB
# --------------------------------------------------------
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
"""
Modified from https://github.com/facebookresearch/fairseq/blob/main/fairseq/modules/transformer_layer.py
https://github.com/microsoft/SpeechT5/blob/main/Speech2C/speech2c/models/modules/transformer_decoder_layer.py
"""
from typing import Dict, List, Optional
import torch
from torch import Tensor
from fairseq.modules import LayerNorm
from fairseq.modules.transformer_layer import TransformerEncoderLayerBase as FairseqTransformerEncoderLayerBase
from fairseq.modules.transformer_layer import TransformerDecoderLayerBase as FairseqTransformerDecoderLayerBase
from speechut.modules import MultiheadAttention
class TransformerEncoderLayerBase(FairseqTransformerEncoderLayerBase):
"""Encoder layer block.
In the original paper each operation (multi-head attention or FFN) is
postprocessed with: `dropout -> add residual -> layernorm`. In the
tensor2tensor code they suggest that learning is more robust when
preprocessing each layer with layernorm and postprocessing with:
`dropout -> add residual`. We default to the approach in the paper, but the
tensor2tensor approach can be enabled by setting
*cfg.encoder.normalize_before* to ``True``.
Args:
args (argparse.Namespace): parsed command-line arguments
"""
def __init__(self, cfg, has_relative_attention_bias=False, scaling_for_att=1.0):
self.scaling_for_att = scaling_for_att
super().__init__(cfg)
if has_relative_attention_bias:
self.norm_k = LayerNorm(self.embed_dim // cfg.encoder.attention_heads)
def build_self_attention(self, embed_dim, cfg, scaling_for_att=1.0):
return MultiheadAttention(
embed_dim,
cfg.encoder.attention_heads,
dropout=cfg.attention_dropout,
self_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
scaling_for_att=self.scaling_for_att,
)
def forward(
self,
x,
encoder_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor] = None,
pos_bias=None,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, seq_len)` where padding elements are indicated by ``1``.
attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`,
where `tgt_len` is the length of output and `src_len` is the
length of input, though here both are equal to `seq_len`.
`attn_mask[tgt_i, src_j] = 1` means that when calculating the
embedding for `tgt_i`, we exclude (mask out) `src_j`. This is
useful for strided self-attention.
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
# anything in original attn_mask = 1, becomes -1e8
# anything in original attn_mask = 0, becomes 0
# Note that we cannot use -inf here, because at some edge cases,
# the attention weight (before softmax) for some padded element in query
# will become -inf, which results in NaN in model parameters
if attn_mask is not None:
attn_mask = attn_mask.masked_fill(
attn_mask.to(torch.bool), -1e8 if x.dtype == torch.float32 else -1e4
)
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if pos_bias is not None:
pos_bias = self.norm_k(pos_bias)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=encoder_padding_mask,
need_weights=False,
attn_mask=attn_mask,
position_bias=pos_bias,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
return x
class TransformerDecoderLayerBase(FairseqTransformerDecoderLayerBase):
"""Decoder layer block.
In the original paper each operation (multi-head attention, encoder
attention or FFN) is postprocessed with: `dropout -> add residual ->
layernorm`. In the tensor2tensor code they suggest that learning is more
robust when preprocessing each layer with layernorm and postprocessing with:
`dropout -> add residual`. We default to the approach in the paper, but the
tensor2tensor approach can be enabled by setting
*cfg.decoder.normalize_before* to ``True``.
Args:
args (argparse.Namespace): parsed command-line arguments
no_encoder_attn (bool, optional): whether to attend to encoder outputs
(default: False).
"""
def __init__(
self, cfg, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False, has_relative_attention_bias=False, scaling_for_att=1.0,
):
self.scaling_for_att = scaling_for_att
super().__init__(cfg,
no_encoder_attn,
add_bias_kv,
add_zero_attn,
)
if has_relative_attention_bias:
self.norm_k = LayerNorm(self.embed_dim // cfg.decoder.attention_heads)
def build_self_attention(
self, embed_dim, cfg, add_bias_kv=False, add_zero_attn=False
):
return MultiheadAttention(
embed_dim,
cfg.decoder.attention_heads,
dropout=cfg.attention_dropout,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
self_attention=not cfg.cross_self_attention,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
scaling_for_att=self.scaling_for_att,
)
def build_encoder_attention(self, embed_dim, cfg):
return MultiheadAttention(
embed_dim,
cfg.decoder.attention_heads,
kdim=cfg.encoder.embed_dim,
vdim=cfg.encoder.embed_dim,
dropout=cfg.attention_dropout,
encoder_decoder_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
scaling_for_att=self.scaling_for_att,
)
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
pos_bias=None,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if pos_bias is not None:
pos_bias = self.norm_k(pos_bias)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
position_bias=pos_bias,
)
if self.c_attn is not None:
tgt_len, bsz = x.size(0), x.size(1)
x = x.view(tgt_len, bsz, self.nh, self.head_dim)
x = torch.einsum("tbhd,h->tbhd", x, self.c_attn)
x = x.reshape(tgt_len, bsz, self.embed_dim)
if self.attn_ln is not None:
x = self.attn_ln(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = self.dropout_module(x)
if self.w_resid is not None:
residual = torch.mul(self.w_resid, residual)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, self_attn_state
return x, attn, None
def make_generation_fast_(self, need_attn: bool = False, **kwargs):
self.need_attn = need_attn