amupd's picture
SpeechT5 upload
62e9ca6
raw
history blame
13.7 kB
# --------------------------------------------------------
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
from typing import Dict, Optional, Tuple
import torch
import torch.nn.functional as F
from fairseq import utils
from torch import Tensor
from fairseq.modules import MultiheadAttention as FairseqMultiheadAttention
class MultiheadAttention(FairseqMultiheadAttention):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
q_noise=0.0,
qn_block_size=8,
scaling_for_att=1.0
):
super().__init__(
embed_dim,
num_heads,
kdim,
vdim,
dropout,
bias,
add_bias_kv,
add_zero_attn,
self_attention,
encoder_decoder_attention,
q_noise,
qn_block_size,
)
self.scaling_for_att = scaling_for_att
def forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
position_bias: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
is_tpu = query.device.type == "xla"
tgt_len, bsz, embed_dim = query.size()
src_len = tgt_len
assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}"
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
assert key_bsz == bsz
assert value is not None
assert src_len, bsz == value.shape[:2]
if (
not self.onnx_trace
and not is_tpu # don't use PyTorch version on TPUs
and incremental_state is None
and not static_kv
# A workaround for quantization to work. Otherwise JIT compilation
# treats bias in linear module as method.
and not torch.jit.is_scripting()
and position_bias is None
):
assert key is not None and value is not None
return F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
torch.empty([0]),
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout_module.p,
self.out_proj.weight,
self.out_proj.bias,
self.training or self.dropout_module.apply_during_inference,
key_padding_mask,
need_weights,
attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
q *= (1 / self.scaling_for_att)
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
],
dim=1,
)
q = (
q.contiguous()
.view(tgt_len, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if k is not None:
k = (
k.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
src_len = k.size(1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
assert k.size(1) == src_len
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
torch.zeros(key_padding_mask.size(0), 1).type_as(
key_padding_mask
),
],
dim=1,
)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
if position_bias is not None: ## first order
## position_bias: [241, 241, 64]
#print ("attn_weights: ", attn_weights.size()) # [492, 241, 241]
reshape_q = q.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0,1) #[241, 492, 64]
#print ("reshape_q: ", reshape_q.size())
B = torch.matmul(reshape_q, position_bias.transpose(-2, -1))
#print ("B: ", B.size()) ## [241, 492, 241]
#B = B.transpose(0, 1).view(bsz, self.num_heads, position_bias.size(0), position_bias.size(1))
B = B.transpose(0, 1).view(bsz*self.num_heads, position_bias.size(0), position_bias.size(1))
#print ("B 2: ", B.size())
attn_weights += B
attn_weights *= self.scaling_for_att
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if not is_tpu:
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
else:
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if self.scaling_for_att > 1.0:
attn_weights = attn_weights - attn_weights.detach().max(dim=-1, keepdim=True)[0]
if before_softmax:
return attn_weights, v
attn_weights_float = utils.softmax(
attn_weights, dim=-1, onnx_trace=self.onnx_trace
)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
if self.onnx_trace and attn.size(1) == 1:
# when ONNX tracing a single decoder step (sequence length == 1)
# the transpose is a no-op copy before view, thus unnecessary
attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights