File size: 10,737 Bytes
8b33290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------

import bisect

import logging
import numpy as np
from torch.utils.data.dataloader import default_collate
from fairseq.data import data_utils

from fairseq.data.fairseq_dataset import FairseqDataset

logger = logging.getLogger(__name__)

class MultitaskDataset(FairseqDataset):
    @staticmethod
    def cumsum(sequence):
        r, s = [], 0
        for e in sequence:
            curr_len = len(e)
            r.append(curr_len + s)
            s += curr_len
        return r

    def __init__(self, datasets, sample_ratios=1, batch_ratio=None):
        super(MultitaskDataset, self).__init__()
        assert len(datasets) > 0, "datasets should not be an empty iterable"
        self.datasets = list(datasets)
        if isinstance(sample_ratios, int):
            sample_ratios = [sample_ratios] * len(self.datasets)
            if batch_ratio is not None:
                logger.info('batch ratio is ' + str(batch_ratio))
                self.batch_ratio = batch_ratio
            else:
                self.batch_ratio = None
        else:
            logger.info('set sample ratio to ' + str(sample_ratios))
            if batch_ratio is not None:
                logger.info('batch ratio is ' + str(batch_ratio))
                self.batch_ratio = batch_ratio
            else:
                self.batch_ratio = None
        self.sample_ratios = sample_ratios
        self._ordered_indices = None
        self._update_size()

    def __len__(self):
        return self.cumulative_sizes[-1]

    def __getitem__(self, idx):
        dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
        sample = self.datasets[dataset_idx][sample_idx]
        if isinstance(sample, dict):
            sample["dataset_idx"] = dataset_idx
        else:
            sample = sample + (dataset_idx,)
        return sample

    def _update_size(self):
        self.cumulative_sizes = self.cumsum(self.datasets)
        self.real_sizes = [len(d) for d in self.datasets]

    def _get_dataset_and_sample_index(self, idx: int):
        dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if dataset_idx == 0:
            sample_idx = idx
        else:
            sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
        sample_idx = sample_idx % self.real_sizes[dataset_idx]
        return dataset_idx, sample_idx

    def collater(self, samples, **extra_args):
        # For now only supports datasets with same underlying collater implementations
        if samples is not None and len(samples) > 0:
            if isinstance(samples[0], dict):
                dataset_idx = samples[0]["dataset_idx"]
            else:
                dataset_idx = samples[0][-1]
                samples = [sample[:-1] for sample in samples]
        else:
            dataset_idx = 0

        if hasattr(self.datasets[dataset_idx], "collater"):
            return self.datasets[dataset_idx].collater(samples, **extra_args)
        else:
            return default_collate(samples, **extra_args)

    def size(self, idx: int):
        """
        Return an example's size as a float or tuple.
        """
        dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
        return self.datasets[dataset_idx].size(sample_idx)

    def num_tokens(self, index: int):
        return np.max(self.size(index))

    def attr(self, attr: str, index: int):
        dataset_idx = bisect.bisect_right(self.cumulative_sizes, index)
        return getattr(self.datasets[dataset_idx], attr, None)

    @property
    def sizes(self):
        _dataset_sizes = []
        for ds in self.datasets:
            if isinstance(ds.sizes, np.ndarray):
                _dataset_sizes.append(ds.sizes)
            else:
                # Only support underlying dataset with single size array.
                assert isinstance(ds.sizes, list)
                _dataset_sizes.append(ds.sizes[0])
        return np.concatenate(_dataset_sizes)

    @property
    def supports_prefetch(self):
        return all(d.supports_prefetch for d in self.datasets)

    def ordered_indices(self):
        # ordered_indices = []
        # for i, dataset in enumerate(self.datasets):
        #     indice = dataset.ordered_indices()
        #     ordered_indices.append(indice)
        if self._ordered_indices is None:
            # Call the underlying dataset's ordered_indices() here, so that we
            # get the same random ordering as we would have from using the
            # underlying sub-datasets directly.
            self._ordered_indices = [
                dataset.ordered_indices()
                for dataset in self.datasets
            ]
        return np.arange(len(self))

    def prefetch(self, indices):
        frm = 0
        for to, ds in zip(self.cumulative_sizes, self.datasets):
            real_size = len(ds)
            if getattr(ds, "supports_prefetch", False):
                ds.prefetch([(i - frm) % real_size for i in indices if frm <= i < to])
            frm = to

    def batch_by_size(
        self,
        indices,
        max_tokens=None,
        max_sentences=None,
        required_batch_size_multiple=1,
    ):
        if not hasattr(self, "max_tokens"):
            self.max_tokens = max_tokens
        if not hasattr(self, "max_sentences"):
            self.max_sentences = max_sentences
        if not hasattr(self, "required_batch_size_multiple"):
            self.required_batch_size_multiple = required_batch_size_multiple
        batch_samplers = []
        for i, dataset in enumerate(self.datasets):
            batch_sampler = dataset.batch_by_size(
                self._ordered_indices[i],
                max_tokens=max_tokens if self.batch_ratio is None else max_tokens * self.batch_ratio[i],
                max_sentences=max_sentences,
                required_batch_size_multiple=required_batch_size_multiple,
            )
            if i > 0:
                for batch in batch_sampler:
                    batch += self.cumulative_sizes[i - 1]
            if self.sample_ratios[i] != 1.0:
                batch_sampler = np.array(batch_sampler)
                batch_sampler = np.random.choice(batch_sampler, int(len(batch_sampler) * self.sample_ratios[i]))
                batch_sampler = list(batch_sampler)
            logger.info('Adjust batch by ratio ' + str(self.sample_ratios[i]) + ' and the number of batch is ' + str(int(len(batch_sampler))) + ' for dataset ' + str(i))
            batch_samplers.extend(batch_sampler)
        return batch_samplers

    def filter_indices_by_size(self, indices, max_positions):
        """
        Filter each sub-dataset independently, then update the round robin to work
        on the filtered sub-datasets.
        """
        if not hasattr(self, "max_positions"):
            self.max_positions = max_positions
        ignored_some = False
        for i in range(len(self.datasets)):
            # ignored = []
            self._ordered_indices[i], ignored = self.datasets[i].filter_indices_by_size(
                self._ordered_indices[i], self.max_positions[i]
            )
            if len(ignored) > 0:
                ignored_some = True
                logger.warning(
                    f"{len(ignored)} samples from {i} have invalid sizes and will be skipped, "
                    f"max_positions={self.max_positions[i]}, first few sample ids={ignored[:10]}"
                )

        logger.info('update dataset size')
        self._update_size()

        # Since we are modifying in place the _ordered_indices,
        # it's not possible anymore to return valid ignored indices.
        # Hopefully the extra debug information print above should be enough to debug.
        # Ideally we would receive ignore_invalid_inputs so that we could have
        # a proper error message.
        return (np.arange(len(self)), [0] if ignored_some else [])

    @property
    def can_reuse_epoch_itr_across_epochs(self):
        return all(d.can_reuse_epoch_itr_across_epochs for d in self.datasets)

    def set_epoch(self, epoch):
        super().set_epoch(epoch)
        for ds in self.datasets:
            if hasattr(ds, "set_epoch"):
                ds.set_epoch(epoch)

    def shuffle_batches(self, batches, seed):
        logger.info("shuffle batches")
        new_batches_fromlist = []
        new_batches_notlist = []
        new_batches = []
        with data_utils.numpy_seed(seed):
            np.random.shuffle(batches)
            for batch in batches:
                if isinstance(batch, list):
                    # np.random.shuffle(batch)
                    new_batches_fromlist.append(batch)
                else:
                    new_batches_notlist.append(batch)
            logger.info("Get " + str(len(new_batches_fromlist)) + " chunk from speech sides")
            logger.info("Get " + str(sum([len(batch_list) for batch_list in new_batches_fromlist])) + " batches from speech sides")
            logger.info("Get " + str(len(new_batches_notlist)) + " batches from text sides")
            if len(new_batches_fromlist) == 0:
                return new_batches_notlist
            st_ratio = int(len(new_batches_notlist) / len(new_batches_fromlist))
            logger.info("Get st_ratio " + str(st_ratio))
            last_idx = 0
            for i in range(len(new_batches_fromlist)):
                if i == len(new_batches_fromlist) - 1:
                    new_batches_fromlist[i].extend(new_batches_notlist[last_idx:])
                else:
                    new_batches_fromlist[i].extend(new_batches_notlist[last_idx : last_idx + st_ratio])
                np.random.shuffle(new_batches_fromlist[i])
                new_batches.extend(new_batches_fromlist[i])
                last_idx = last_idx + st_ratio
        logger.info("Finish shuffle")
        return new_batches

    def reset_batch_sampler(self):
        logger.info("reset batch sampler")
        self._ordered_indices = [
            self.datasets[i].ordered_indices()
            for i in range(len(self.datasets))
        ]
        self.filter_indices_by_size(None, None)

        batch_samplers = self.batch_by_size(
            None,
            self.max_tokens,
            self.max_sentences,
            self.required_batch_size_multiple
        )
        return batch_samplers