Spaces:
Runtime error
Runtime error
File size: 10,737 Bytes
8b33290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import bisect
import logging
import numpy as np
from torch.utils.data.dataloader import default_collate
from fairseq.data import data_utils
from fairseq.data.fairseq_dataset import FairseqDataset
logger = logging.getLogger(__name__)
class MultitaskDataset(FairseqDataset):
@staticmethod
def cumsum(sequence):
r, s = [], 0
for e in sequence:
curr_len = len(e)
r.append(curr_len + s)
s += curr_len
return r
def __init__(self, datasets, sample_ratios=1, batch_ratio=None):
super(MultitaskDataset, self).__init__()
assert len(datasets) > 0, "datasets should not be an empty iterable"
self.datasets = list(datasets)
if isinstance(sample_ratios, int):
sample_ratios = [sample_ratios] * len(self.datasets)
if batch_ratio is not None:
logger.info('batch ratio is ' + str(batch_ratio))
self.batch_ratio = batch_ratio
else:
self.batch_ratio = None
else:
logger.info('set sample ratio to ' + str(sample_ratios))
if batch_ratio is not None:
logger.info('batch ratio is ' + str(batch_ratio))
self.batch_ratio = batch_ratio
else:
self.batch_ratio = None
self.sample_ratios = sample_ratios
self._ordered_indices = None
self._update_size()
def __len__(self):
return self.cumulative_sizes[-1]
def __getitem__(self, idx):
dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
sample = self.datasets[dataset_idx][sample_idx]
if isinstance(sample, dict):
sample["dataset_idx"] = dataset_idx
else:
sample = sample + (dataset_idx,)
return sample
def _update_size(self):
self.cumulative_sizes = self.cumsum(self.datasets)
self.real_sizes = [len(d) for d in self.datasets]
def _get_dataset_and_sample_index(self, idx: int):
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
sample_idx = sample_idx % self.real_sizes[dataset_idx]
return dataset_idx, sample_idx
def collater(self, samples, **extra_args):
# For now only supports datasets with same underlying collater implementations
if samples is not None and len(samples) > 0:
if isinstance(samples[0], dict):
dataset_idx = samples[0]["dataset_idx"]
else:
dataset_idx = samples[0][-1]
samples = [sample[:-1] for sample in samples]
else:
dataset_idx = 0
if hasattr(self.datasets[dataset_idx], "collater"):
return self.datasets[dataset_idx].collater(samples, **extra_args)
else:
return default_collate(samples, **extra_args)
def size(self, idx: int):
"""
Return an example's size as a float or tuple.
"""
dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
return self.datasets[dataset_idx].size(sample_idx)
def num_tokens(self, index: int):
return np.max(self.size(index))
def attr(self, attr: str, index: int):
dataset_idx = bisect.bisect_right(self.cumulative_sizes, index)
return getattr(self.datasets[dataset_idx], attr, None)
@property
def sizes(self):
_dataset_sizes = []
for ds in self.datasets:
if isinstance(ds.sizes, np.ndarray):
_dataset_sizes.append(ds.sizes)
else:
# Only support underlying dataset with single size array.
assert isinstance(ds.sizes, list)
_dataset_sizes.append(ds.sizes[0])
return np.concatenate(_dataset_sizes)
@property
def supports_prefetch(self):
return all(d.supports_prefetch for d in self.datasets)
def ordered_indices(self):
# ordered_indices = []
# for i, dataset in enumerate(self.datasets):
# indice = dataset.ordered_indices()
# ordered_indices.append(indice)
if self._ordered_indices is None:
# Call the underlying dataset's ordered_indices() here, so that we
# get the same random ordering as we would have from using the
# underlying sub-datasets directly.
self._ordered_indices = [
dataset.ordered_indices()
for dataset in self.datasets
]
return np.arange(len(self))
def prefetch(self, indices):
frm = 0
for to, ds in zip(self.cumulative_sizes, self.datasets):
real_size = len(ds)
if getattr(ds, "supports_prefetch", False):
ds.prefetch([(i - frm) % real_size for i in indices if frm <= i < to])
frm = to
def batch_by_size(
self,
indices,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
if not hasattr(self, "max_tokens"):
self.max_tokens = max_tokens
if not hasattr(self, "max_sentences"):
self.max_sentences = max_sentences
if not hasattr(self, "required_batch_size_multiple"):
self.required_batch_size_multiple = required_batch_size_multiple
batch_samplers = []
for i, dataset in enumerate(self.datasets):
batch_sampler = dataset.batch_by_size(
self._ordered_indices[i],
max_tokens=max_tokens if self.batch_ratio is None else max_tokens * self.batch_ratio[i],
max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
)
if i > 0:
for batch in batch_sampler:
batch += self.cumulative_sizes[i - 1]
if self.sample_ratios[i] != 1.0:
batch_sampler = np.array(batch_sampler)
batch_sampler = np.random.choice(batch_sampler, int(len(batch_sampler) * self.sample_ratios[i]))
batch_sampler = list(batch_sampler)
logger.info('Adjust batch by ratio ' + str(self.sample_ratios[i]) + ' and the number of batch is ' + str(int(len(batch_sampler))) + ' for dataset ' + str(i))
batch_samplers.extend(batch_sampler)
return batch_samplers
def filter_indices_by_size(self, indices, max_positions):
"""
Filter each sub-dataset independently, then update the round robin to work
on the filtered sub-datasets.
"""
if not hasattr(self, "max_positions"):
self.max_positions = max_positions
ignored_some = False
for i in range(len(self.datasets)):
# ignored = []
self._ordered_indices[i], ignored = self.datasets[i].filter_indices_by_size(
self._ordered_indices[i], self.max_positions[i]
)
if len(ignored) > 0:
ignored_some = True
logger.warning(
f"{len(ignored)} samples from {i} have invalid sizes and will be skipped, "
f"max_positions={self.max_positions[i]}, first few sample ids={ignored[:10]}"
)
logger.info('update dataset size')
self._update_size()
# Since we are modifying in place the _ordered_indices,
# it's not possible anymore to return valid ignored indices.
# Hopefully the extra debug information print above should be enough to debug.
# Ideally we would receive ignore_invalid_inputs so that we could have
# a proper error message.
return (np.arange(len(self)), [0] if ignored_some else [])
@property
def can_reuse_epoch_itr_across_epochs(self):
return all(d.can_reuse_epoch_itr_across_epochs for d in self.datasets)
def set_epoch(self, epoch):
super().set_epoch(epoch)
for ds in self.datasets:
if hasattr(ds, "set_epoch"):
ds.set_epoch(epoch)
def shuffle_batches(self, batches, seed):
logger.info("shuffle batches")
new_batches_fromlist = []
new_batches_notlist = []
new_batches = []
with data_utils.numpy_seed(seed):
np.random.shuffle(batches)
for batch in batches:
if isinstance(batch, list):
# np.random.shuffle(batch)
new_batches_fromlist.append(batch)
else:
new_batches_notlist.append(batch)
logger.info("Get " + str(len(new_batches_fromlist)) + " chunk from speech sides")
logger.info("Get " + str(sum([len(batch_list) for batch_list in new_batches_fromlist])) + " batches from speech sides")
logger.info("Get " + str(len(new_batches_notlist)) + " batches from text sides")
if len(new_batches_fromlist) == 0:
return new_batches_notlist
st_ratio = int(len(new_batches_notlist) / len(new_batches_fromlist))
logger.info("Get st_ratio " + str(st_ratio))
last_idx = 0
for i in range(len(new_batches_fromlist)):
if i == len(new_batches_fromlist) - 1:
new_batches_fromlist[i].extend(new_batches_notlist[last_idx:])
else:
new_batches_fromlist[i].extend(new_batches_notlist[last_idx : last_idx + st_ratio])
np.random.shuffle(new_batches_fromlist[i])
new_batches.extend(new_batches_fromlist[i])
last_idx = last_idx + st_ratio
logger.info("Finish shuffle")
return new_batches
def reset_batch_sampler(self):
logger.info("reset batch sampler")
self._ordered_indices = [
self.datasets[i].ordered_indices()
for i in range(len(self.datasets))
]
self.filter_indices_by_size(None, None)
batch_samplers = self.batch_by_size(
None,
self.max_tokens,
self.max_sentences,
self.required_batch_size_multiple
)
return batch_samplers
|