Spaces:
Runtime error
Runtime error
File size: 13,717 Bytes
8b33290 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------
import logging
import math
import torch
import contextlib
from typing import List, Tuple
import torch.nn as nn
from fairseq.data.data_utils import lengths_to_padding_mask
from fairseq.data.data_utils import compute_mask_indices
from fairseq.modules import (
PositionalEmbedding,
Fp32GroupNorm,
FairseqDropout,
SamePad,
GradMultiply,
LayerNorm,
Fp32LayerNorm,
TransposeLast,
)
import numpy as np
logger = logging.getLogger(__name__)
class LinearLayer(nn.Module):
def __init__(self, idim, odom, dropout=0):
super(LinearLayer, self).__init__()
self.linear = nn.Sequential(
nn.Linear(idim, odom),
nn.LayerNorm(odom),
nn.Dropout(dropout),
nn.ReLU(),
)
def get_out_seq_lens_tensor(self, in_seq_lens_tensor):
out = in_seq_lens_tensor.clone()
return out
def forward(self, src_tokens, src_lengths):
"""
src_tokens: [B, T, C]
src_lengths: [B]
"""
x = self.linear(src_tokens)
x = x.transpose(0, 1).contiguous() # -> T x B x C
return x, src_lengths
class SpeechEncoderPrenet(nn.Module):
"""
Args:
in_channels (int): the number of input channels
mid_channels (int): the number of intermediate channels
out_channels (int): the number of output channels
kernel_sizes (List[int]): the kernel size for each convolutional layer
"""
def __init__(self, args):
super(SpeechEncoderPrenet, self).__init__()
self.dropout_module = FairseqDropout(
p=args.dropout, module_name=self.__class__.__name__
)
self.embed_scale = math.sqrt(args.encoder_embed_dim)
if args.no_scale_embedding:
self.embed_scale = 1.0
self.padding_idx = 1
self.freeze_encoder_updates = args.freeze_encoder_updates
self.num_updates = 0
assert args.encoder_speech_prenet in ["conv", "linear"], args.encoder_speech_prenet
feature_enc_layers = eval(args.conv_feature_layers) # noqa
self.embed = feature_enc_layers[-1][0]
self.feature_extractor = ConvFeatureExtractionModel(
conv_layers=feature_enc_layers,
dropout=0.0,
mode=args.extractor_mode,
conv_bias=args.conv_bias,
)
feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers])
self.feat2tar_ratio = (
args.label_rates * feature_ds_rate / args.sample_rate
)
self.post_extract_proj = (
nn.Linear(self.embed, args.encoder_embed_dim)
if self.embed != args.encoder_embed_dim
else None
)
self.use_conv_pos = args.use_conv_pos
self.use_sinc_pos = args.use_sinc_pos
self.use_abs_pos = getattr(args, "use_abs_pos", False)
self.feature_grad_mult = args.feature_grad_mult
if self.use_conv_pos:
self.layer_norm = LayerNorm(self.embed)
self.pos_conv = nn.Conv1d(
args.encoder_embed_dim,
args.encoder_embed_dim,
kernel_size=args.conv_pos,
padding=args.conv_pos // 2,
groups=args.conv_pos_groups,
)
dropout = 0
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * args.encoder_embed_dim))
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
nn.init.constant_(self.pos_conv.bias, 0)
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
assert not (self.use_sinc_pos and self.use_abs_pos), f"sinc pos: {self.use_sinc_pos} abs pos: {self.use_abs_pos}"
if self.use_sinc_pos:
self.embed_positions = PositionalEmbedding(
args.max_speech_positions, args.encoder_embed_dim, self.padding_idx
)
if self.use_abs_pos:
self.embed_positions = PositionalEmbedding(
args.max_speech_positions, args.encoder_embed_dim, self.padding_idx, learned=True
)
# Hubert
self.mask_prob = args.mask_prob
self.mask_selection = args.mask_selection
self.mask_other = args.mask_other
self.hubert_mask_length = args.hubert_mask_length
self.no_mask_overlap = args.no_mask_overlap
self.mask_min_space = args.mask_min_space
self.mask_channel_prob = args.mask_channel_prob
self.mask_channel_selection = args.mask_channel_selection
self.mask_channel_other = args.mask_channel_other
self.mask_channel_length = args.mask_channel_length
self.no_mask_channel_overlap = args.no_mask_channel_overlap
self.mask_channel_min_space = args.mask_channel_min_space
self.mask_emb = nn.Parameter(
torch.FloatTensor(args.encoder_embed_dim).uniform_()
)
def forward(self, src_tokens, require_feat_pen=False, target_list=None, padding_mask=None, mask=True):
ft = self.freeze_encoder_updates <= self.num_updates
with torch.no_grad() if not ft else contextlib.ExitStack():
return self._forward(src_tokens, require_feat_pen, target_list, padding_mask, mask)
def _forward(self, src_tokens, require_feat_pen=False, target_list=None, padding_mask=None, mask=True):
if self.feature_grad_mult > 0:
x = self.feature_extractor(src_tokens)
x = x.transpose(1, 2).transpose(0, 1) # [length, batch, hidden_size]
if self.feature_grad_mult != 1.0:
x = GradMultiply.apply(x, self.feature_grad_mult)
else:
with torch.no_grad():
x = self.feature_extractor(src_tokens)
x = x.transpose(1, 2).transpose(0, 1) # [length, batch, hidden_size]
x = x.transpose(0, 1) # [batch, length, hidden_size]
encoder_padding_mask = padding_mask
x = x.transpose(1, 2) # [batch, hidden_size, length]
if target_list is not None:
x, target_list = self.forward_targets(x, target_list)
features_pen = x.float().pow(2).mean()
x = x.transpose(1, 2) # [batch, length, hidden_size]
x = self.layer_norm(x)
encoder_padding_mask = self.forward_padding_mask(x, encoder_padding_mask)
if self.post_extract_proj is not None:
x = self.post_extract_proj(x)
x = self.dropout_module(x)
if mask:
x, mask_indices = self.apply_hubert_mask(
x, encoder_padding_mask
)
else:
x = x
mask_indices = None
if self.use_conv_pos:
positions = self.pos_conv(x.transpose(1, 2))
positions = positions.transpose(1, 2)
#else:
# positions = self.embed_positions(encoder_padding_mask)
x = x + positions
if self.use_sinc_pos:
positions = self.embed_positions(encoder_padding_mask)
x = x + positions
# x = self.dropout_module(x)
if require_feat_pen:
return (x, features_pen, mask_indices, target_list), encoder_padding_mask
else:
# For consistence with encoder
return x, encoder_padding_mask
def forward_targets(
self, features: torch.Tensor, target_list: List[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Trim features to ensure labels exist and then get aligned labels
feat_tsz = features.size(2)
targ_tsz = min([t.size(1) for t in target_list])
if self.feat2tar_ratio * feat_tsz > targ_tsz:
feat_tsz = int(targ_tsz / self.feat2tar_ratio)
features = features[..., :feat_tsz]
target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio
target_list = [t[:, target_inds.long()] for t in target_list]
return features, target_list
def forward_padding_mask(
self, features: torch.Tensor, padding_mask: torch.Tensor,
) -> torch.Tensor:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(
padding_mask.size(0), features.size(1), -1
)
padding_mask = padding_mask.all(-1)
return padding_mask
def get_src_lengths(self, src_lengths):
return self.feature_extractor.get_out_seq_lens_tensor(src_lengths)
def apply_hubert_mask(self, x, padding_mask):
B, T, C = x.shape
if self.mask_prob > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.hubert_mask_length,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x[mask_indices] = self.mask_emb
else:
mask_indices = None
if self.mask_channel_prob > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
return x, mask_indices
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
self.num_updates = num_updates
class ConvFeatureExtractionModel(nn.Module):
def __init__(
self,
conv_layers: List[Tuple[int, int, int]],
dropout: float = 0.0,
mode: str = "default",
conv_bias: bool = False,
):
super().__init__()
assert mode in {"default", "layer_norm"}
def block(
n_in,
n_out,
k,
stride,
is_layer_norm=False,
is_group_norm=False,
conv_bias=False,
):
def make_conv():
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
nn.init.kaiming_normal_(conv.weight)
return conv
assert (
is_layer_norm and is_group_norm
) == False, "layer norm and group norm are exclusive"
if is_layer_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
nn.Sequential(
TransposeLast(),
Fp32LayerNorm(dim, elementwise_affine=True),
TransposeLast(),
),
nn.GELU(),
)
elif is_group_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
Fp32GroupNorm(dim, dim, affine=True),
nn.GELU(),
)
else:
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
in_d = 1
self.conv_layers = nn.ModuleList()
self.conv_layers_infos = conv_layers
for i, cl in enumerate(conv_layers):
assert len(cl) == 3, "invalid conv definition: " + str(cl)
(dim, k, stride) = cl
self.conv_layers.append(
block(
in_d,
dim,
k,
stride,
is_layer_norm=mode == "layer_norm",
is_group_norm=mode == "default" and i == 0,
conv_bias=conv_bias,
)
)
in_d = dim
def forward(self, x):
# BxT -> BxCxT
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x
def get_out_seq_lens_nonmask_after_a_layer(self, in_seq_lens_tensor, i):
"""Returns the out_seq_lens_nonmask 0/1 tensor after a layer.
Args:
in_seq_lens_tensor (LongTensor): length
Returns:
LongTensor: length
"""
out_lengths = in_seq_lens_tensor.clone()
out_lengths = ((out_lengths.float() - (self.conv_layers_infos[i][1] - 1) - 1) / self.conv_layers_infos[i][-1] + 1).floor().long()
out_nonmask = (~lengths_to_padding_mask(out_lengths)).float()
return out_nonmask, out_lengths
def get_out_seq_lens_tensor(self, in_seq_lens_tensor):
out = in_seq_lens_tensor.clone()
for i in range(len(self.conv_layers)):
out = ((out.float() - (self.conv_layers_infos[i][1] - 1) - 1) / self.conv_layers_infos[i][-1] + 1).floor().long()
return out
|