File size: 13,717 Bytes
8b33290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transformer (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST

# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------

import logging
import math
import torch
import contextlib
from typing import List, Tuple
import torch.nn as nn

from fairseq.data.data_utils import lengths_to_padding_mask
from fairseq.data.data_utils import compute_mask_indices
from fairseq.modules import (
    PositionalEmbedding,
    Fp32GroupNorm,
    FairseqDropout,
    SamePad,
    GradMultiply,
    LayerNorm,
    Fp32LayerNorm,
    TransposeLast,
)
import numpy as np

logger = logging.getLogger(__name__)


class LinearLayer(nn.Module):
    def __init__(self, idim, odom, dropout=0):
        super(LinearLayer, self).__init__()
        self.linear = nn.Sequential(
            nn.Linear(idim, odom),
            nn.LayerNorm(odom),
            nn.Dropout(dropout),
            nn.ReLU(),
        )

    def get_out_seq_lens_tensor(self, in_seq_lens_tensor):
        out = in_seq_lens_tensor.clone()
        return out
    
    def forward(self, src_tokens, src_lengths):
        """
        src_tokens: [B, T, C]
        src_lengths: [B]
        """
        x = self.linear(src_tokens)
        x = x.transpose(0, 1).contiguous() # -> T x B x C
        return x, src_lengths


class SpeechEncoderPrenet(nn.Module):
    """

    Args:
        in_channels (int): the number of input channels
        mid_channels (int): the number of intermediate channels
        out_channels (int): the number of output channels
        kernel_sizes (List[int]): the kernel size for each convolutional layer
    """

    def __init__(self, args):
        super(SpeechEncoderPrenet, self).__init__()
        self.dropout_module = FairseqDropout(
            p=args.dropout, module_name=self.__class__.__name__
        )
        self.embed_scale = math.sqrt(args.encoder_embed_dim)
        if args.no_scale_embedding:
            self.embed_scale = 1.0
        self.padding_idx = 1
        self.freeze_encoder_updates = args.freeze_encoder_updates
        self.num_updates = 0
        assert args.encoder_speech_prenet in ["conv", "linear"], args.encoder_speech_prenet
        feature_enc_layers = eval(args.conv_feature_layers)  # noqa
        self.embed = feature_enc_layers[-1][0]

        self.feature_extractor = ConvFeatureExtractionModel(
            conv_layers=feature_enc_layers,
            dropout=0.0,
            mode=args.extractor_mode,
            conv_bias=args.conv_bias,
        )
        feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers])
        self.feat2tar_ratio = (
            args.label_rates * feature_ds_rate / args.sample_rate
        )

        self.post_extract_proj = (
            nn.Linear(self.embed, args.encoder_embed_dim)
            if self.embed != args.encoder_embed_dim
            else None
        )

        self.use_conv_pos = args.use_conv_pos
        self.use_sinc_pos = args.use_sinc_pos
        self.use_abs_pos = getattr(args, "use_abs_pos", False)

        self.feature_grad_mult = args.feature_grad_mult
        if self.use_conv_pos:
            self.layer_norm = LayerNorm(self.embed)
            self.pos_conv = nn.Conv1d(
                args.encoder_embed_dim,
                args.encoder_embed_dim,
                kernel_size=args.conv_pos,
                padding=args.conv_pos // 2,
                groups=args.conv_pos_groups,
            )
            dropout = 0
            std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * args.encoder_embed_dim))
            nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
            nn.init.constant_(self.pos_conv.bias, 0)
            self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
            self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())

        assert not (self.use_sinc_pos and self.use_abs_pos), f"sinc pos: {self.use_sinc_pos} abs pos: {self.use_abs_pos}"
        if self.use_sinc_pos:
            self.embed_positions = PositionalEmbedding(
                args.max_speech_positions, args.encoder_embed_dim, self.padding_idx
            )
        if self.use_abs_pos:
            self.embed_positions = PositionalEmbedding(
                args.max_speech_positions, args.encoder_embed_dim, self.padding_idx, learned=True
            )
        
        # Hubert
        self.mask_prob = args.mask_prob
        self.mask_selection = args.mask_selection
        self.mask_other = args.mask_other
        self.hubert_mask_length = args.hubert_mask_length
        self.no_mask_overlap = args.no_mask_overlap
        self.mask_min_space = args.mask_min_space

        self.mask_channel_prob = args.mask_channel_prob
        self.mask_channel_selection = args.mask_channel_selection
        self.mask_channel_other = args.mask_channel_other
        self.mask_channel_length = args.mask_channel_length
        self.no_mask_channel_overlap = args.no_mask_channel_overlap
        self.mask_channel_min_space = args.mask_channel_min_space

        self.mask_emb = nn.Parameter(
            torch.FloatTensor(args.encoder_embed_dim).uniform_()
        )

    def forward(self, src_tokens, require_feat_pen=False, target_list=None, padding_mask=None, mask=True):
        ft = self.freeze_encoder_updates <= self.num_updates
        with torch.no_grad() if not ft else contextlib.ExitStack():
            return self._forward(src_tokens, require_feat_pen, target_list, padding_mask, mask)

    def _forward(self, src_tokens, require_feat_pen=False, target_list=None, padding_mask=None, mask=True):
        if self.feature_grad_mult > 0:
            x = self.feature_extractor(src_tokens)
            x = x.transpose(1, 2).transpose(0, 1)  # [length, batch, hidden_size]
            if self.feature_grad_mult != 1.0:
                x = GradMultiply.apply(x, self.feature_grad_mult)
        else:
            with torch.no_grad():
                x = self.feature_extractor(src_tokens)
                x = x.transpose(1, 2).transpose(0, 1)  # [length, batch, hidden_size]
        x = x.transpose(0, 1) # [batch, length, hidden_size]

        encoder_padding_mask = padding_mask

        x = x.transpose(1, 2) # [batch, hidden_size, length]
        if target_list is not None:
            x, target_list = self.forward_targets(x, target_list)
        features_pen = x.float().pow(2).mean()
        x = x.transpose(1, 2) # [batch, length, hidden_size]
        x = self.layer_norm(x)
        encoder_padding_mask = self.forward_padding_mask(x, encoder_padding_mask)
        if self.post_extract_proj is not None:
            x = self.post_extract_proj(x)
        x = self.dropout_module(x)
        if mask:
            x, mask_indices = self.apply_hubert_mask(
                x, encoder_padding_mask
            )
        else:
            x = x
            mask_indices = None

        if self.use_conv_pos:
            positions = self.pos_conv(x.transpose(1, 2))
            positions = positions.transpose(1, 2)
        #else:
        #    positions = self.embed_positions(encoder_padding_mask)
            x = x + positions

        if self.use_sinc_pos:
            positions = self.embed_positions(encoder_padding_mask)
            x = x + positions

        # x = self.dropout_module(x)

        if require_feat_pen:
            return (x, features_pen, mask_indices, target_list), encoder_padding_mask
        else:
            # For consistence with encoder
            return x, encoder_padding_mask

    def forward_targets(
        self, features: torch.Tensor, target_list: List[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Trim features to ensure labels exist and then get aligned labels
        feat_tsz = features.size(2)
        targ_tsz = min([t.size(1) for t in target_list])
        if self.feat2tar_ratio * feat_tsz > targ_tsz:
            feat_tsz = int(targ_tsz / self.feat2tar_ratio)
            features = features[..., :feat_tsz]
        target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio
        target_list = [t[:, target_inds.long()] for t in target_list]
        return features, target_list

    def forward_padding_mask(
        self, features: torch.Tensor, padding_mask: torch.Tensor,
    ) -> torch.Tensor:
        extra = padding_mask.size(1) % features.size(1)
        if extra > 0:
            padding_mask = padding_mask[:, :-extra]
        padding_mask = padding_mask.view(
            padding_mask.size(0), features.size(1), -1
        )
        padding_mask = padding_mask.all(-1)
        return padding_mask

    def get_src_lengths(self, src_lengths):
        return self.feature_extractor.get_out_seq_lens_tensor(src_lengths)

    def apply_hubert_mask(self, x, padding_mask):
        B, T, C = x.shape
        if self.mask_prob > 0:
            mask_indices = compute_mask_indices(
                (B, T),
                padding_mask,
                self.mask_prob,
                self.hubert_mask_length,
                self.mask_selection,
                self.mask_other,
                min_masks=2,
                no_overlap=self.no_mask_overlap,
                min_space=self.mask_min_space,
            )
            mask_indices = torch.from_numpy(mask_indices).to(x.device)
            x[mask_indices] = self.mask_emb
        else:
            mask_indices = None

        if self.mask_channel_prob > 0:
            mask_channel_indices = compute_mask_indices(
                (B, C),
                None,
                self.mask_channel_prob,
                self.mask_channel_length,
                self.mask_channel_selection,
                self.mask_channel_other,
                no_overlap=self.no_mask_channel_overlap,
                min_space=self.mask_channel_min_space,
            )
            mask_channel_indices = (
                torch.from_numpy(mask_channel_indices)
                .to(x.device)
                .unsqueeze(1)
                .expand(-1, T, -1)
            )
            x[mask_channel_indices] = 0

        return x, mask_indices

    def set_num_updates(self, num_updates):
        """Set the number of parameters updates."""
        self.num_updates = num_updates

class ConvFeatureExtractionModel(nn.Module):
    def __init__(
        self,
        conv_layers: List[Tuple[int, int, int]],
        dropout: float = 0.0,
        mode: str = "default",
        conv_bias: bool = False,
    ):
        super().__init__()

        assert mode in {"default", "layer_norm"}

        def block(
            n_in,
            n_out,
            k,
            stride,
            is_layer_norm=False,
            is_group_norm=False,
            conv_bias=False,
        ):
            def make_conv():
                conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
                nn.init.kaiming_normal_(conv.weight)
                return conv

            assert (
                is_layer_norm and is_group_norm
            ) == False, "layer norm and group norm are exclusive"

            if is_layer_norm:
                return nn.Sequential(
                    make_conv(),
                    nn.Dropout(p=dropout),
                    nn.Sequential(
                        TransposeLast(),
                        Fp32LayerNorm(dim, elementwise_affine=True),
                        TransposeLast(),
                    ),
                    nn.GELU(),
                )
            elif is_group_norm:
                return nn.Sequential(
                    make_conv(),
                    nn.Dropout(p=dropout),
                    Fp32GroupNorm(dim, dim, affine=True),
                    nn.GELU(),
                )
            else:
                return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())

        in_d = 1
        self.conv_layers = nn.ModuleList()
        self.conv_layers_infos = conv_layers
        for i, cl in enumerate(conv_layers):
            assert len(cl) == 3, "invalid conv definition: " + str(cl)
            (dim, k, stride) = cl

            self.conv_layers.append(
                block(
                    in_d,
                    dim,
                    k,
                    stride,
                    is_layer_norm=mode == "layer_norm",
                    is_group_norm=mode == "default" and i == 0,
                    conv_bias=conv_bias,
                )
            )
            in_d = dim

    def forward(self, x):
        # BxT -> BxCxT
        x = x.unsqueeze(1)
        for conv in self.conv_layers:
            x = conv(x)
        return x

    def get_out_seq_lens_nonmask_after_a_layer(self, in_seq_lens_tensor, i):
        """Returns the out_seq_lens_nonmask 0/1 tensor after a layer.

        Args:
            in_seq_lens_tensor (LongTensor): length

        Returns:
            LongTensor: length
        """
        out_lengths = in_seq_lens_tensor.clone()
        out_lengths = ((out_lengths.float() - (self.conv_layers_infos[i][1] - 1) - 1) / self.conv_layers_infos[i][-1] + 1).floor().long()
        out_nonmask = (~lengths_to_padding_mask(out_lengths)).float()
        return out_nonmask, out_lengths

    def get_out_seq_lens_tensor(self, in_seq_lens_tensor):
        out = in_seq_lens_tensor.clone()
        for i in range(len(self.conv_layers)):
            out = ((out.float() - (self.conv_layers_infos[i][1] - 1) - 1) / self.conv_layers_infos[i][-1] + 1).floor().long()
        return out