File size: 18,063 Bytes
8b33290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transform (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------

from dataclasses import dataclass, field

import torch
from fairseq import metrics, utils
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from artst.models.modules.speech_encoder_prenet import SpeechEncoderPrenet
from espnet.nets.pytorch_backend.e2e_tts_tacotron2 import GuidedAttentionLoss
from omegaconf import II
from typing import Any


@dataclass
class TexttoSpeechLossConfig(FairseqDataclass):
    use_masking: bool = field(
        default=True,
        metadata={"help": "Whether to use masking in calculation of loss"},
    )
    use_weighted_masking: bool = field(
        default=False,
        metadata={"help": "Whether to use weighted masking in calculation of loss"},
    )
    loss_type: str = field(
        default="L1",
        metadata={"help": "How to calc loss"},
    )
    bce_pos_weight: float = field(
        default=5.0,
        metadata={"help": "Positive sample weight in BCE calculation (only for use-masking=True)"},
    )
    bce_loss_lambda: float = field(
        default=1.0,
        metadata={"help": "Lambda in bce loss"},
    )
    use_guided_attn_loss: bool = field(
        default=False,
        metadata={"help": "Whether to use guided attention loss"},
    )
    guided_attn_loss_sigma: float = field(
        default=0.4,
        metadata={"help": "Sigma in guided attention loss"},
    )
    guided_attn_loss_lambda: float = field(
        default=10.0,
        metadata={"help": "Lambda in guided attention loss"},
    )
    num_layers_applied_guided_attn: int = field(
        default=2,
        metadata={"help": "Number of layers to be applied guided attention loss, if set -1, all of the layers will be applied."},
    )
    num_heads_applied_guided_attn: int = field(
        default=2,
        metadata={"help": "Number of heads in each layer to be applied guided attention loss, if set -1, all of the heads will be applied."},
    )
    modules_applied_guided_attn: Any = field(
        default=("encoder-decoder",),
        metadata={"help": "Module name list to be applied guided attention loss"},
    )
    sentence_avg: bool = II("optimization.sentence_avg")


class TexttoSpeechLoss(FairseqCriterion):
    def __init__(
        self,
        task,
        sentence_avg,
        use_masking=True,
        use_weighted_masking=False,
        loss_type="L1",
        bce_pos_weight=5.0,
        bce_loss_lambda=1.0,
        use_guided_attn_loss=False,
        guided_attn_loss_sigma=0.4,
        guided_attn_loss_lambda=1.0,
        num_layers_applied_guided_attn=2,
        num_heads_applied_guided_attn=2,
        modules_applied_guided_attn=["encoder-decoder"],
    ):
        super().__init__(task)
        self.sentence_avg = sentence_avg
        self.use_masking = use_masking
        self.use_weighted_masking = use_weighted_masking
        self.loss_type = loss_type
        self.bce_pos_weight = bce_pos_weight
        self.bce_loss_lambda = bce_loss_lambda
        self.use_guided_attn_loss = use_guided_attn_loss
        self.guided_attn_loss_sigma = guided_attn_loss_sigma
        self.guided_attn_loss_lambda = guided_attn_loss_lambda
        # define loss function
        self.criterion = Tacotron2Loss(
            use_masking=use_masking,
            use_weighted_masking=use_weighted_masking,
            bce_pos_weight=bce_pos_weight,
        )
        if self.use_guided_attn_loss:
            self.num_layers_applied_guided_attn = num_layers_applied_guided_attn
            self.num_heads_applied_guided_attn = num_heads_applied_guided_attn
            self.modules_applied_guided_attn = modules_applied_guided_attn
        if self.use_guided_attn_loss:
            self.attn_criterion = GuidedMultiHeadAttentionLoss(
                sigma=guided_attn_loss_sigma,
                alpha=guided_attn_loss_lambda,
            )

    def forward(self, model, sample):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        net_output = model(**sample["net_input"])
        loss, l1_loss, l2_loss, bce_loss, enc_dec_attn_loss = self.compute_loss(model, net_output, sample)
        # sample_size = (
        #     sample["target"].size(0) if self.sentence_avg else sample["nframes"]
        # )
        sample_size = 1
        logging_output = {
            "loss": loss.item(),
            "l1_loss": l1_loss.item(),
            "l2_loss": l2_loss.item(),
            "bce_loss": bce_loss.item(),
            "sample_size": 1,
            "ntokens": sample["ntokens"],
            "nsentences": sample["target"].size(0),
        }

        if enc_dec_attn_loss is not None:
            logging_output['enc_dec_attn_loss'] = enc_dec_attn_loss.item()

        if hasattr(model, 'text_encoder_prenet'):
            logging_output["encoder_alpha"] = model.text_encoder_prenet.encoder_prenet[-1].alpha.item()
            logging_output["decoder_alpha"] = model.speech_decoder_prenet.decoder_prenet[-1].alpha.item()
        elif hasattr(model, "speech_encoder_prenet"):
            logging_output["decoder_alpha"] = model.speech_decoder_prenet.decoder_prenet[-1].alpha.item()
        else:
            if 'task' not in sample:
                logging_output["encoder_alpha"] = model.encoder_prenet.encoder_prenet[-1].alpha.item()
            logging_output["decoder_alpha"] = model.decoder_prenet.decoder_prenet[-1].alpha.item()

        return loss, sample_size, logging_output

    def compute_loss(self, model, net_output, sample):
        before_outs, after_outs, logits, attn = net_output
        labels = sample["labels"]
        ys = sample["dec_target"]
        olens = sample["dec_target_lengths"]
        ilens = sample["src_lengths"]

        # modifiy mod part of groundtruth
        if model.reduction_factor > 1:
            olens_in = olens.new([torch.div(olen, model.reduction_factor, rounding_mode='floor') for olen in olens])
            olens = olens.new([olen - olen % model.reduction_factor for olen in olens])
            max_olen = max(olens)
            ys = ys[:, :max_olen]
            labels = labels[:, :max_olen]
            labels = torch.scatter(labels, 1, (olens - 1).unsqueeze(1), 1.0) # make sure at least one frame has 1
            # labels[:, -1] = 1.0  
        else:
            olens_in = olens

        # caluculate loss values
        l1_loss, l2_loss, bce_loss = self.criterion(
            after_outs, before_outs, logits, ys, labels, olens
        )

        # l1_loss = l1_loss / ys.size(2)
        # l2_loss = l2_loss / ys.size(2)

        if self.loss_type == "L1":
            loss = l1_loss + self.bce_loss_lambda * bce_loss if self.bce_loss_lambda > 0.0 else l1_loss
        elif self.loss_type == "L2":
            loss = l2_loss + self.bce_loss_lambda * bce_loss if self.bce_loss_lambda > 0.0 else l2_loss
        elif self.loss_type == "L1+L2":
            loss = l1_loss + l2_loss + self.bce_loss_lambda * bce_loss if self.bce_loss_lambda > 0.0 else l1_loss + l2_loss
        else:
            raise ValueError("unknown --loss-type " + self.loss_type)

        # calculate guided attention loss
        enc_dec_attn_loss = None
        if self.use_guided_attn_loss:
            # calculate the input lengths of encoder, which is determined by encoder prenet
            if hasattr(model, 'encoder_reduction_factor') and model.encoder_reduction_factor > 1:
                ilens_in = ilens.new([ilen // model.encoder_reduction_factor for ilen in ilens])
            else:
                ilens_in = ilens
            # work for speech to speech model's input
            if "task_name" in sample and sample["task_name"] == "s2s":
                m = None
                if hasattr(model, 'encoder_prenet'):
                    m = model.encoder_prenet
                elif hasattr(model, 'speech_encoder_prenet'):
                    m = model.speech_encoder_prenet
                if m is not None and isinstance(m, SpeechEncoderPrenet):
                    ilens_in = m.get_src_lengths(ilens_in)
            # calculate for encoder-decoder
            if "encoder-decoder" in self.modules_applied_guided_attn:
                attn = [att_l[:, : self.num_heads_applied_guided_attn] for att_l in attn]
                att_ws = torch.cat(attn, dim=1)  # (B, H*L, T_out, T_in)
                enc_dec_attn_loss = self.attn_criterion(att_ws, ilens_in, olens_in)
                loss = loss + enc_dec_attn_loss

        return loss, l1_loss, l2_loss, bce_loss, enc_dec_attn_loss

    @classmethod
    def reduce_metrics(cls, logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training."""
        loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
        l1_loss_sum = sum(log.get("l1_loss", 0) for log in logging_outputs)
        l2_loss_sum = sum(log.get("l2_loss", 0) for log in logging_outputs)
        bce_loss_sum = sum(log.get("bce_loss", 0) for log in logging_outputs)
        sample_size = max(1, sum(log.get("sample_size", 0) for log in logging_outputs))
        metrics.log_scalar(
            "loss", loss_sum / sample_size, sample_size, 1, round=5
        )
        encoder_alpha_sum = sum(log.get("encoder_alpha", 0) for log in logging_outputs)
        decoder_alpha_sum = sum(log.get("decoder_alpha", 0) for log in logging_outputs)
        ngpu = sum(log.get("ngpu", 0) for log in logging_outputs)

        metrics.log_scalar(
            "l1_loss", l1_loss_sum / sample_size, sample_size, 2, round=5
        )
        metrics.log_scalar(
            "l2_loss", l2_loss_sum / sample_size, sample_size, 2, round=5
        )
        metrics.log_scalar(
            "bce_loss", bce_loss_sum / sample_size, sample_size, 2, round=5
        )
        metrics.log_scalar(
            "encoder_alpha", encoder_alpha_sum / sample_size, sample_size, round=5
        )
        metrics.log_scalar(
            "decoder_alpha", decoder_alpha_sum / sample_size, sample_size, round=5
        )

        if "enc_dec_attn_loss" in logging_outputs[0]:
            enc_dec_attn_loss_sum = sum(log.get("enc_dec_attn_loss", 0) for log in logging_outputs)
            metrics.log_scalar(
                "enc_dec_attn_loss", enc_dec_attn_loss_sum / sample_size, sample_size, round=8
            )


    @staticmethod
    def logging_outputs_can_be_summed() -> bool:
        """
        Whether the logging outputs returned by `forward` can be summed
        across workers prior to calling `reduce_metrics`. Setting this
        to True will improves distributed training speed.
        """
        return True

class Tacotron2Loss(torch.nn.Module):
    """Loss function module for Tacotron2."""

    def __init__(
        self, use_masking=True, use_weighted_masking=False, bce_pos_weight=20.0
    ):
        """Initialize Tactoron2 loss module.

        Args:
            use_masking (bool): Whether to apply masking
                for padded part in loss calculation.
            use_weighted_masking (bool):
                Whether to apply weighted masking in loss calculation.
            bce_pos_weight (float): Weight of positive sample of stop token.

        """
        super(Tacotron2Loss, self).__init__()
        assert (use_masking != use_weighted_masking) or not use_masking
        self.use_masking = use_masking
        self.use_weighted_masking = use_weighted_masking

        # define criterions
        # reduction = "none" if self.use_weighted_masking else "sum"
        reduction = "none" if self.use_weighted_masking else "mean"
        self.l1_criterion = torch.nn.L1Loss(reduction=reduction)
        self.mse_criterion = torch.nn.MSELoss(reduction=reduction)
        self.bce_criterion = torch.nn.BCEWithLogitsLoss(
            reduction=reduction, pos_weight=torch.tensor(bce_pos_weight)
        )

        # NOTE(kan-bayashi): register pre hook function for the compatibility
        self._register_load_state_dict_pre_hook(self._load_state_dict_pre_hook)

    def forward(self, after_outs, before_outs, logits, ys, labels, olens):
        """Calculate forward propagation.

        Args:
            after_outs (Tensor): Batch of outputs after postnets (B, Lmax, odim).
            before_outs (Tensor): Batch of outputs before postnets (B, Lmax, odim).
            logits (Tensor): Batch of stop logits (B, Lmax).
            ys (Tensor): Batch of padded target features (B, Lmax, odim).
            labels (LongTensor): Batch of the sequences of stop token labels (B, Lmax).
            olens (LongTensor): Batch of the lengths of each target (B,).

        Returns:
            Tensor: L1 loss value.
            Tensor: Mean square error loss value.
            Tensor: Binary cross entropy loss value.

        """
        # make mask and apply it
        if self.use_masking:
            masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
            ys = ys.masked_select(masks)
            after_outs = after_outs.masked_select(masks)
            before_outs = before_outs.masked_select(masks)
            labels = labels.masked_select(masks[:, :, 0])
            logits = logits.masked_select(masks[:, :, 0])

        # calculate loss
        l1_loss = self.l1_criterion(after_outs, ys) + self.l1_criterion(before_outs, ys)
        mse_loss = self.mse_criterion(after_outs, ys) + self.mse_criterion(
            before_outs, ys
        )
        bce_loss = self.bce_criterion(logits, labels)

        # make weighted mask and apply it
        if self.use_weighted_masking:
            masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
            weights = masks.float() / masks.sum(dim=1, keepdim=True).float()
            out_weights = weights.div(ys.size(0) * ys.size(2))
            logit_weights = weights.div(ys.size(0))

            # apply weight
            l1_loss = l1_loss.mul(out_weights).masked_select(masks).sum()
            mse_loss = mse_loss.mul(out_weights).masked_select(masks).sum()
            bce_loss = (
                bce_loss.mul(logit_weights.squeeze(-1))
                .masked_select(masks.squeeze(-1))
                .sum()
            )

        return l1_loss, mse_loss, bce_loss

    def _load_state_dict_pre_hook(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        """Apply pre hook fucntion before loading state dict.

        From v.0.6.1 `bce_criterion.pos_weight` param is registered as a parameter but
        old models do not include it and as a result, it causes missing key error when
        loading old model parameter. This function solve the issue by adding param in
        state dict before loading as a pre hook function
        of the `load_state_dict` method.

        """
        key = prefix + "bce_criterion.pos_weight"
        if key not in state_dict:
            state_dict[key] = self.bce_criterion.pos_weight

class GuidedMultiHeadAttentionLoss(GuidedAttentionLoss):
    """Guided attention loss function module for multi head attention.
    Args:
        sigma (float, optional): Standard deviation to control
        how close attention to a diagonal.
        alpha (float, optional): Scaling coefficient (lambda).
        reset_always (bool, optional): Whether to always reset masks.
    """

    def forward(self, att_ws, ilens, olens):
        """Calculate forward propagation.
        Args:
            att_ws (Tensor):
                Batch of multi head attention weights (B, H, T_max_out, T_max_in).
            ilens (LongTensor): Batch of input lenghts (B,).
            olens (LongTensor): Batch of output lenghts (B,).
        Returns:
            Tensor: Guided attention loss value.
        """
        if self.guided_attn_masks is None:
            self.guided_attn_masks = (
                self._make_guided_attention_masks(ilens, olens)
                .to(att_ws.device)
                .unsqueeze(1)
            )
        if self.masks is None:
            self.masks = self._make_masks(ilens, olens).to(att_ws.device).unsqueeze(1)
        losses = self.guided_attn_masks * att_ws
        loss = torch.mean(losses.masked_select(self.masks))
        if self.reset_always:
            self._reset_masks()

        return self.alpha * loss

    def _make_guided_attention_masks(self, ilens, olens):
        n_batches = len(ilens)
        max_ilen = max(ilens)
        max_olen = max(olens)
        guided_attn_masks = torch.zeros((n_batches, max_olen, max_ilen), device=olens.device)
        for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
            guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(
                ilen, olen, self.sigma
            )
        return guided_attn_masks

    @staticmethod
    def _make_guided_attention_mask(ilen, olen, sigma):
        grid_x, grid_y = torch.meshgrid(torch.arange(olen, device=olen.device), torch.arange(ilen, device=olen.device))
        grid_x, grid_y = grid_x.float(), grid_y.float()
        return 1.0 - torch.exp(
            -((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma**2))
        )

    @staticmethod
    def _make_masks(ilens, olens):
        in_masks = make_non_pad_mask(ilens).to(ilens.device)  # (B, T_in)
        out_masks = make_non_pad_mask(olens).to(olens.device)  # (B, T_out)
        return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2)  # (B, T_out, T_in)