File size: 17,688 Bytes
8b33290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# --------------------------------------------------------
# ArTST: Arabic Text and Speech Transform (https://arxiv.org/abs/2310.16621)
# Github source: https://github.com/mbzuai-nlp/ArTST
# Based on speecht5, fairseq and espnet code bases
# https://github.com/microsoft/SpeechT5/tree/main/SpeechT5; https://github.com/pytorch/fairseq; https://github.com/espnet/espnet
# --------------------------------------------------------

import math
from argparse import Namespace
from dataclasses import dataclass, field
from omegaconf import II
from typing import Optional

import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.data.data_utils import post_process
from fairseq.tasks import FairseqTask
from fairseq.logging.meters import safe_round

import logging
logger = logging.getLogger(__name__)

@dataclass
class SpeechtoTextLossConfig(FairseqDataclass):
    zero_infinity: bool = field(
        default=False,
        metadata={"help": "zero inf loss when source length <= target length"},
    )
    sentence_avg: bool = II("optimization.sentence_avg")
    post_process: Optional[str] = field(
        default="sentencepiece",
        metadata={
            "help": "how to post process predictions into words. can be letter, "
            "wordpiece, BPE symbols, etc. "
            "See fairseq.data.data_utils.post_process() for full list of options"
        },
    )
    wer_kenlm_model: Optional[str] = field(
        default=None,
        metadata={
            "help": "if this is provided, use kenlm to compute wer (along with other wer_* args)"
        },
    )
    wer_lexicon: Optional[str] = field(
        default=None,
        metadata={"help": "lexicon to use with wer_kenlm_model"},
    )
    wer_lm_weight: float = field(
        default=2.0,
        metadata={"help": "lm weight to use with wer_kenlm_model"},
    )
    wer_word_score: float = field(
        default=-1.0,
        metadata={"help": "lm word score to use with wer_kenlm_model"},
    )

    wer_args: Optional[str] = field(
        default=None,
        metadata={
            "help": "DEPRECATED: tuple of (wer_kenlm_model, wer_lexicon, wer_lm_weight, wer_word_score)"
        },
    )

    label_smoothing: float = field(
        default=0.0,
        metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
    )
    report_accuracy: bool = field(
        default=False,
        metadata={"help": "report accuracy metric"},
    )
    ignore_prefix_size: int = field(
        default=0,
        metadata={"help": "Ignore first N tokens"},
    )
    #: bool = II("optimization.sentence_avg")

    ce_weight: float = field(
        default=1.0,
        metadata={"help": "loss weight for cross entropy"},
    )
    ctc_weight: float = field(
        default=0.0,
        metadata={"help": "loss weiehgt for ctc in ASR"},
    )


def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True):
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)
    if reduce:
        nll_loss = nll_loss.sum()
        smooth_loss = smooth_loss.sum()
    eps_i = epsilon / (lprobs.size(-1) - 1)
    loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
    return loss, nll_loss


class SpeechtoTextLoss(FairseqCriterion):
    def __init__(
        self,
        cfg: SpeechtoTextLossConfig, 
        task: FairseqTask,
        sentence_avg=True,
        label_smoothing=0.1,
        ignore_prefix_size=0,
        report_accuracy=False,
        ce_weight=1.0,
        ctc_weight=0.0,
    ):

        super().__init__(task)
        self.blank_idx = (
            task.target_dictionary.index(task.blank_symbol)
            if hasattr(task, "blank_symbol")
            else 0
        )
        #print ("self.blank_idx: ", self.blank_idx)

        self.pad_idx = task.target_dictionary.pad()
        self.eos_idx = task.target_dictionary.eos()
        self.post_process = cfg.post_process
        self.ce_weight = ce_weight
        self.ctc_weight = ctc_weight

        ## for ce
        self.sentence_avg = sentence_avg
        self.eps = label_smoothing
        self.ignore_prefix_size = ignore_prefix_size
        self.report_accuracy = report_accuracy

        if cfg.wer_args is not None:
            (
                cfg.wer_kenlm_model,
                cfg.wer_lexicon,
                cfg.wer_lm_weight,
                cfg.wer_word_score,
            ) = eval(cfg.wer_args)

        if cfg.wer_kenlm_model is not None:
            from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder

            dec_args = Namespace()
            dec_args.nbest = 1
            dec_args.criterion = "ctc"
            dec_args.kenlm_model = cfg.wer_kenlm_model
            dec_args.lexicon = cfg.wer_lexicon
            dec_args.beam = 50
            dec_args.beam_size_token = min(50, len(task.target_dictionary))
            dec_args.beam_threshold = min(50, len(task.target_dictionary))
            dec_args.lm_weight = cfg.wer_lm_weight
            dec_args.word_score = cfg.wer_word_score
            dec_args.unk_weight = -math.inf
            dec_args.sil_weight = 0

            self.w2l_decoder = W2lKenLMDecoder(dec_args, task.target_dictionary)
        else:
            self.w2l_decoder = None

        self.zero_infinity = cfg.zero_infinity
        #self.sentence_avg = cfg.sentence_avg

        if self.ce_weight > 0 and self.ctc_weight > 0:
            logger.info("Using cross entropy loss and CTC loss for ASR")
        elif self.ce_weight > 0:
            logger.info("Only using CE loss")
        elif self.ctc_weight > 0:
            logger.info("Only using CTC loss for ASR")
        else:
            logger.info("ERROR")

    def forward(self, model, sample, reduce=True):

        if self.ce_weight == 0 and self.ctc_weight > 0:
            sample["only_ctc"] = True

        net_output_decoder, net_output = model(**sample["net_input"])
        
        if self.ce_weight > 0:
            loss_ce, nll_loss_ce = self.compute_loss(model, net_output_decoder, sample, reduce=reduce)
            #print ("loss_ce: ", loss_ce)
        else:
            nll_loss_ce = None

        if self.ctc_weight > 0:
            loss_ctc, lprobs, input_lengths = self.compute_loss_ctc(model, net_output, sample)

        if self.ce_weight > 0 and self.ctc_weight > 0:
            loss = self.ce_weight * loss_ce + self.ctc_weight * loss_ctc
        elif self.ce_weight > 0:
            loss = loss_ce
        elif self.ctc_weight > 0:
            loss = loss_ctc
        else:
            logger.info("ERROR: must ce_weight > 0 or ctc_weight > 0")

        ntokens = (
            sample["ntokens"] if "ntokens" in sample else sample["target_lengths"].sum().item()
        )

        sample_size = sample["target"].size(0) if self.sentence_avg else ntokens

        logging_output = {
            "loss": loss.item(),
            "ce_loss": loss_ce.item() if self.ce_weight > 0 else 0,
            "ctc_loss": loss_ctc.item() if self.ctc_weight > 0 else 0,
            "nll_loss": nll_loss_ce.item() if nll_loss_ce is not None else 0,
            "ntokens": sample["ntokens"],
            "nsentences": sample["target"].size(0),
            "sample_size": sample_size,
        }

        if self.ce_weight > 0 and self.report_accuracy:
            n_correct, total = self.compute_accuracy(model, net_output_decoder, sample)
            logging_output["n_correct"] = utils.item(n_correct.item())
            logging_output["total"] = utils.item(total.data)

        if self.ctc_weight > 0 and not model.training:
            import editdistance

            with torch.no_grad():
                lprobs_t = lprobs.transpose(0, 1).float().contiguous().cpu()

                c_err = 0
                c_len = 0
                w_errs = 0
                w_len = 0
                wv_errs = 0
                for lp, t, inp_l in zip(
                    lprobs_t,
                    sample["target_label"]
                    if "target_label" in sample
                    else sample["target"],
                    input_lengths,
                ):
                    lp = lp[:inp_l].unsqueeze(0)

                    decoded = None
                    if self.w2l_decoder is not None:
                        decoded = self.w2l_decoder.decode(lp)
                        if len(decoded) < 1:
                            decoded = None
                        else:
                            decoded = decoded[0]
                            if len(decoded) < 1:
                                decoded = None
                            else:
                                decoded = decoded[0]

                    p = (t != self.task.target_dictionary.pad()) & (
                        t != self.task.target_dictionary.eos()
                    )
                    targ = t[p]
                    targ_units = self.task.target_dictionary.string(targ)
                    targ_units_arr = targ.tolist()

                    toks = lp.argmax(dim=-1).unique_consecutive()
                    pred_units_arr = toks[toks != self.blank_idx].tolist()

                    c_err += editdistance.eval(pred_units_arr, targ_units_arr)
                    c_len += len(targ_units_arr)

                    targ_words = post_process(targ_units, self.post_process).split()

                    pred_units = self.task.target_dictionary.string(pred_units_arr)
                    pred_words_raw = post_process(pred_units, self.post_process).split()

                    if decoded is not None and "words" in decoded:
                        pred_words = decoded["words"]
                        w_errs += editdistance.eval(pred_words, targ_words)
                        wv_errs += editdistance.eval(pred_words_raw, targ_words)
                    else:
                        dist = editdistance.eval(pred_words_raw, targ_words)
                        w_errs += dist
                        wv_errs += dist

                    w_len += len(targ_words)

                logging_output["wv_errors"] = wv_errs
                logging_output["w_errors"] = w_errs
                logging_output["w_total"] = w_len
                logging_output["c_errors"] = c_err
                logging_output["c_total"] = c_len

        return loss, sample_size, logging_output

    def compute_loss_ctc(self, model, net_output, sample):
        lprobs = model.get_normalized_probs_for_ctc(
            net_output, log_probs=True
        ).contiguous()  # (T, B, C) from the encoder

        if net_output["encoder_padding_mask"] is not None:
            non_padding_mask = ~net_output["encoder_padding_mask"][0]
            input_lengths = non_padding_mask.long().sum(-1)
        else:
            input_lengths = lprobs.new_full(
                (lprobs.size(1),), lprobs.size(0), dtype=torch.long
            )

        pad_mask = (sample["target"] != self.pad_idx) & (
            sample["target"] != self.eos_idx
        )
        targets_flat = sample["target"].masked_select(pad_mask)
        if "target_lengths" in sample:
            target_lengths = sample["target_lengths"]
        else:
            target_lengths = pad_mask.sum(-1)

        ##processing
        target_lengths = target_lengths - 1

        with torch.backends.cudnn.flags(enabled=False):
            loss_ctc = F.ctc_loss(
                lprobs,
                targets_flat,
                input_lengths,
                target_lengths,
                blank=self.blank_idx,
                reduction="sum",
                zero_infinity=True,
            )

        return loss_ctc, lprobs, input_lengths

    ## for ce
    def get_lprobs_and_target(self, model, net_output, sample):
        lprobs = model.get_normalized_probs(net_output, log_probs=True)
        target = model.get_targets(sample, net_output)
        if self.ignore_prefix_size > 0:
            if getattr(lprobs, "batch_first", False):
                lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
                target = target[:, self.ignore_prefix_size :].contiguous()
            else:
                lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
                target = target[self.ignore_prefix_size :, :].contiguous()
        return lprobs.view(-1, lprobs.size(-1)), target.view(-1)

    def compute_loss(self, model, net_output, sample, reduce=True):
        lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
        loss, nll_loss = label_smoothed_nll_loss(
            lprobs,
            target,
            self.eps,
            ignore_index=self.padding_idx,
            reduce=reduce,
        )
        return loss, nll_loss

    def compute_accuracy(self, model, net_output, sample):
        lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
        mask = target.ne(self.padding_idx)
        n_correct = torch.sum(
            lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
        )
        total = torch.sum(mask)
        return n_correct, total


    @staticmethod
    def reduce_metrics(logging_outputs) -> None:
        """Aggregate logging outputs from data parallel training."""

        loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
        nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
        ce_loss_sum = sum(log.get("ce_loss", 0) for log in logging_outputs)
        ctc_loss_sum = sum(log.get("ctc_loss", 0) for log in logging_outputs)
        ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
        nsentences = utils.item(
            sum(log.get("nsentences", 0) for log in logging_outputs)
        )
        sample_size = utils.item(
            sum(log.get("sample_size", 0) for log in logging_outputs)
        )

        metrics.log_scalar(
            "loss", loss_sum / sample_size / math.log(2), sample_size, round=3
        )

        metrics.log_scalar(
            "ctc_loss", ctc_loss_sum / sample_size / math.log(2), ntokens, 2, round=3
        )
        metrics.log_scalar(
            "ce_loss", ce_loss_sum / ntokens, ntokens, 2, round=3
        )
        metrics.log_scalar(
            "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, 2, round=3
        )
        metrics.log_derived(
            "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg, 2)
        )
        
        total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
        if total > 0:
            metrics.log_scalar("total", total)
            n_correct = utils.item(
                sum(log.get("n_correct", 0) for log in logging_outputs)
            )
            metrics.log_scalar("n_correct", n_correct)
            metrics.log_derived(
                "accuracy",
                lambda meters: round(
                    meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
                )
                if meters["total"].sum > 0
                else float("nan"),
                2
            )

        metrics.log_scalar("ntokens", ntokens)
        metrics.log_scalar("nsentences", nsentences)
        if sample_size != ntokens:
            metrics.log_scalar(
                "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
            )

        c_errors = sum(log.get("c_errors", 0) for log in logging_outputs)
        metrics.log_scalar("_c_errors", c_errors)
        c_total = sum(log.get("c_total", 0) for log in logging_outputs)
        metrics.log_scalar("_c_total", c_total)
        w_errors = sum(log.get("w_errors", 0) for log in logging_outputs)
        metrics.log_scalar("_w_errors", w_errors)
        wv_errors = sum(log.get("wv_errors", 0) for log in logging_outputs)
        metrics.log_scalar("_wv_errors", wv_errors)
        w_total = sum(log.get("w_total", 0) for log in logging_outputs)
        metrics.log_scalar("_w_total", w_total)

        if c_total > 0:
            metrics.log_derived(
                "uer",
                lambda meters: safe_round(
                    meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3
                )
                if meters["_c_total"].sum > 0
                else float("nan"),
            )
        if w_total > 0:
            metrics.log_derived(
                "wer",
                lambda meters: safe_round(
                    meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3
                )
                if meters["_w_total"].sum > 0
                else float("nan"),
            )
            metrics.log_derived(
                "raw_wer",
                lambda meters: safe_round(
                    meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3
                )
                if meters["_w_total"].sum > 0
                else float("nan"),
            )

    @staticmethod
    def logging_outputs_can_be_summed() -> bool:
        """
        Whether the logging outputs returned by `forward` can be summed
        across workers prior to calling `reduce_metrics`. Setting this
        to True will improves distributed training speed.
        """
        return True