File size: 9,509 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
"""
    Modified from 
    https://github.com/facebookresearch/fairseq/blob/main/fairseq/tasks/translation.py

"""

import torch
import logging
from dataclasses import dataclass, field
from typing import List, Optional, NamedTuple

from fairseq import utils
from fairseq.data import LanguagePairDataset, TransformEosLangPairDataset, FairseqDataset
from fairseq.tasks import register_task
from fairseq.tasks.translation import TranslationTask, TranslationConfig

from yitrans_iwslt22.data.concat_dataset import ConcatDataset
from yitrans_iwslt22.data.load_langpair_dataset import load_langpair_dataset

logger = logging.getLogger(__name__)



class LangPairStripDataset(FairseqDataset):
    def __init__(
        self,
        dataset: LanguagePairDataset,
        src_eos: int,
        src_bos: Optional[int] = None,
        noise_id: Optional[int] = -1,
        mask_ratio: Optional[float] = 0,
        mask_type: Optional[str] = "random",
    ):
        self.dataset = dataset
        self.src_eos = src_eos
        self.src_bos = src_bos
        self.noise_id = noise_id
        self.mask_ratio = mask_ratio
        self.mask_type = mask_type
        assert mask_type in ("random", "tail")

    @property
    def src_sizes(self):
        return self.dataset.src_sizes

    @property
    def tgt_sizes(self):
        return self.dataset.tgt_sizes

    @property
    def sizes(self):
        # dataset.sizes can be a dynamically computed sizes:
        return self.dataset.sizes

    def get_batch_shapes(self):
        return self.dataset.buckets

    def num_tokens_vec(self, indices):
        return self.dataset.num_tokens_vec(indices)

    def __len__(self):
        return len(self.dataset)

    def num_tokens(self, index):
        return self.dataset.num_tokens(index)

    def size(self, index):
        return self.dataset.size(index)

    def ordered_indices(self):
        return self.dataset.ordered_indices()

    @property
    def supports_prefetch(self):
        return getattr(self.dataset, "supports_prefetch", False)

    def prefetch(self, indices):
        return self.dataset.prefetch(indices)

    def mask_src_tokens(self, sample):
        src_item = sample["source"]
        mask = None
        if self.mask_type == "random":
            mask = torch.rand(len(src_item)).le(self.mask_ratio)
        else:
            mask = torch.ones(len(src_item))
            mask[: int(len(src_item) * (1 - self.mask_ratio))] = 0
            mask = mask.eq(1)
        mask[-1] = False
        if src_item[0] == self.src_bos:
            mask[0] = False
        if src_item[-2] == self.src_eos:
            mask[-2] = False
        no_mask = ~mask
        mask_src_item = src_item[no_mask]
        smp = sample
        smp["source"] = mask_src_item
        print(f"{len(src_item)}: {src_item}")
        print(f"{len(mask_src_item)}: {mask_src_item}")
        return smp

    def __getitem__(self, index):
        sample = self.dataset[index]
        if self.mask_ratio > 0:
            sample = self.mask_src_tokens(sample)
        return sample

    def collater(self, samples, pad_to_length=None):
        return self.dataset.collater(samples, pad_to_length=pad_to_length)


@dataclass
class AddTranslationConfig(TranslationConfig):
    langs: str = ""
    prepend_bos: bool = False
    normalize: bool = False
    append_source_id: bool = False
    mask_text_ratio: float = 0
    ### ShrinkingDataset related, not used
    shrink_start_epoch: int = 0
    shrink_end_epoch: int = 0
    shrink_start_ratio: float = 1.0
    shrink_end_ratio: float = 1.0


@register_task("iwslt_translation_from_pretrained", dataclass=AddTranslationConfig)
class TranslationFromPretrainedTask(TranslationTask):
    args: AddTranslationConfig

    def __init__(self, args: AddTranslationConfig, src_dict, tgt_dict):
        super().__init__(args, src_dict, tgt_dict)
        self.args = args
        self.langs = args.langs.split(",")
        for d in [src_dict, tgt_dict]:
            for l in self.langs:
                d.add_symbol("[{}]".format(l))
            d.add_symbol("<mask>")


    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """
        paths = utils.split_paths(self.args.data)
        assert len(paths) > 0
        data_path = paths[(epoch - 1) % len(paths)]

        # infer langcode
        src, tgt = self.args.source_lang, self.args.target_lang

        paired_datasets = []
        for sub_split in split.split(","):
            paired_dataset= load_langpair_dataset(
                data_path,
                sub_split,
                src,
                self.src_dict,
                tgt,
                self.tgt_dict,
                combine=combine,
                dataset_impl=self.args.dataset_impl,
                upsample_primary=self.args.upsample_primary,
                left_pad_source=self.args.left_pad_source,
                left_pad_target=self.args.left_pad_target,
                max_source_positions=getattr(self.args, "max_source_positions", 1024),
                max_target_positions=getattr(self.args, "max_target_positions", 1024),
                load_alignments=self.args.load_alignments,
                prepend_bos=getattr(self.args, "prepend_bos", False),
                append_source_id=getattr(self.args, "append_source_id", False),
            )
            if not split.startswith("valid") and getattr(self.args, "mask_text_ratio", 0) > 0 and not sub_split.startswith("asr_"):
                mask_text_ratio = getattr(self.args, "mask_text_ratio", 0)
                noise_token_id = self.src_dict.index("<mask>")
                logger.info(f"Masking {sub_split} at a probability: {mask_text_ratio}")
                paired_dataset = LangPairStripDataset(
                    paired_dataset,
                    src_bos=self.src_dict.bos(),
                    src_eos=self.src_dict.eos(),
                    noise_id=noise_token_id,
                    mask_ratio=mask_text_ratio,
                )
            paired_datasets.append(paired_dataset)
        paired_dataset = paired_datasets[0] if len(paired_datasets) == 1 else ConcatDataset(paired_datasets, 1)

        if getattr(self.args, "append_source_id", False):
            logger.info(f"Appending <lang-id> to the end of samples")
            self.datasets[split] = paired_dataset
        else:
            logger.info(f"Replacing <eos> with <lang-id> for prev_output_tokens")
            self.datasets[split] = TransformEosLangPairDataset(
                paired_dataset,
                src_eos=self.src_dict.eos(),
                tgt_bos=self.tgt_dict.eos(),  # 'prev_output_tokens' starts with eos
                new_tgt_bos=self.tgt_dict.index("[{}]".format(tgt)),
            )

    def build_generator(self, models, args, **unused):
        if getattr(args, "score_reference", False):
            from fairseq.sequence_scorer import SequenceScorer

            return SequenceScorer(
                self.target_dictionary,
                eos=self.tgt_dict.index("[{}]".format(self.args.target_lang)),
            )
        else:
            from yitrans_iwslt22.sequence_generator import SequenceGenerator

            return SequenceGenerator(
                models,
                self.target_dictionary,
                beam_size=getattr(args, "beam", 5),
                max_len_a=getattr(args, "max_len_a", 0),
                max_len_b=getattr(args, "max_len_b", 200),
                min_len=getattr(args, "min_len", 1),
                normalize_scores=(not getattr(args, "unnormalized", False)),
                len_penalty=getattr(args, "lenpen", 1),
                unk_penalty=getattr(args, "unkpen", 0),
                temperature=getattr(args, "temperature", 1.0),
                match_source_len=getattr(args, "match_source_len", False),
                no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
                eos=self.tgt_dict.index("[{}]".format(self.args.target_lang)) if getattr(self.args, "append_source_id", False) else None,
                bos=None if getattr(self.args, "append_source_id", False) else self.tgt_dict.index("[{}]".format(self.args.target_lang))
            )

    def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
        if getattr(self.args, "append_source_id", False):
            src_lang_id = self.source_dictionary.index("[{}]".format(self.args.source_lang))
            source_tokens = []
            for s_t in src_tokens:
                s_t = torch.cat([s_t, s_t.new(1).fill_(src_lang_id)])
                source_tokens.append(s_t)
        else:
            source_tokens = src_tokens
        
        dataset = LanguagePairDataset(
            source_tokens,
            src_lengths,
            self.source_dictionary,
            tgt_dict=self.target_dictionary,
            constraints=constraints,
        )
        return dataset