Spaces:
Runtime error
Runtime error
File size: 17,979 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
import logging
import contextlib
from argparse import Namespace
from typing import Any, Optional
import torch
import torch.nn as nn
import pickle
from dataclasses import dataclass, field
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model
from fairseq.models.hubert.hubert import MASKING_DISTRIBUTION_CHOICES
from fairseq.models.hubert.hubert_asr import HubertAsrConfig
from fairseq.tasks import FairseqTask
from omegaconf import II, MISSING
from yitrans_iwslt22.modules.multimodal_transformer_decoder import MultimodalTransformerDecoder
logger = logging.getLogger(__name__)
@dataclass
class JointStep2Config(HubertAsrConfig):
## for decoder overrides
decoder_layerdrop: float = field(
default=0.1,
metadata={"help": "probability of dropping a decoder layer in hubert"},
)
add_decoder: bool = field(
default=False,
metadata={"help": "whether to add decoder for CE Loss on code"},
)
reuse_text_emb: bool = field(
default=False,
metadata={"help": "reuse text token embeddings instead of initialize randomly"},
)
freeze_decoder_updates: int = field(
default=0,
metadata={"help": "dont finetune hubert for this many updates"},
)
# share_enc_dec_embeddings: bool = field(
# default=False,
# metadata={"help": "share embeddings of (text encoder, text decoder)"},
# )
share_s2t_t2t_embeddings: bool = field(
default=False,
metadata={"help": "share embeddings of (speech2text(code), text2text)"},
)
share_ctc_decoder_embed: bool = field(
default=False,
metadata={"help": "share ctc and decoder embedding (only when share_decoder_input_output_embed is true)"},
)
enc_grad_mult: float = field(
default=1.0,
metadata={"help": "reset feature grad mult in hubert to this (only for st2t)"},
)
retain_dict_path: Optional[str] = field(
default=None,
metadata={"help": "delete embeddings according to this path"},
)
load_step2_model_from: Optional[str] = field(
default=None,
metadata={
"help": "load step2 model from"
},
)
# for other overrides
adaptor_stride: int = field(
default=2,
metadata={"help": "adaptor stride"},
)
# ## for reset some configs
# load_pretrained_mbart_from: Optional[str] = field(
# default=None,
# metadata={
# "help": "model to take text encoder decoder weights from (for initialization)"
# },
# )
# load_pretrained_w2v_from: Optional[str] = field(
# default=None,
# metadata={
# "help": "model to take speech encoder weights from (for initialization)"
# },
# )
# use_rel_pos_enc: bool = field(
# default=True,
# metadata={"help": "whether to use relative positional encoding"},
# )
# encoder_layers: int = field(
# default=12,
# metadata={"help": "encoder_layers"},
# )
# add_text_modality: bool = field(
# default=True,
# metadata={"help": "add_text_modality"},
# )
# add_text_encoder: bool = field(
# default=True,
# metadata={"help": "add_text_encoder"},
# )
# share_all_embeddings: bool = field(
# default=True,
# metadata={"help": "share text_encoder, decoder_input, decoder_output embeddings"},
# )
# add_adaptor: bool = field(
# default=True,
# metadata={"help": "add_adaptor"},
# )
@register_model("hubert_step2", dataclass=JointStep2Config)
class JointStep2Model(BaseFairseqModel):
def __init__(self, cfg: JointStep2Config, w2v_encoder: BaseFairseqModel):
super().__init__()
self.cfg = cfg
self.w2v_encoder = w2v_encoder
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
@classmethod
def build_model(cls, cfg: JointStep2Config, task: FairseqTask):
"""Build a new model instance."""
w2v_encoder = JointED(cfg, task.target_dictionary)
return cls(cfg, w2v_encoder)
def get_normalized_probs(self, net_output, log_probs, sample=None):
"""Get normalized probabilities (or log probs) from a net's output."""
if "encoder_out" not in net_output:
return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample)
if "encoder_out_for_ctc" in net_output:
logits = net_output["encoder_out_for_ctc"]
else:
logits = net_output["encoder_out"]
if isinstance(logits, list):
logits = logits[0]
if log_probs:
return utils.log_softmax(logits.float(), dim=-1)
else:
return utils.softmax(logits.float(), dim=-1)
def get_logits(self, net_output):
logits = net_output["encoder_out"]
padding = net_output["encoder_padding_mask"]
if padding is not None and padding.any():
padding = padding.T
logits[padding][..., 0] = 0
logits[padding][..., 1:] = float("-inf")
return logits
def forward(self, **kwargs):
x = self.w2v_encoder(**kwargs)
return x
@property
def encoder(self):
return self.w2v_encoder
def reorder_encoder_out(self, encoder_out, new_order):
return self.encoder.reorder_encoder_out(encoder_out, new_order)
@property
def decoder(self):
return self.w2v_encoder.w2v_model.decoder
class JointED(FairseqEncoder):
def __init__(self, cfg: JointStep2Config, tgt_dict=None):
self.apply_mask = cfg.apply_mask
logger.info(f"self.apply_mask: {self.apply_mask}")
arg_overrides = {
"dropout": cfg.dropout,
"activation_dropout": cfg.activation_dropout,
"dropout_input": cfg.dropout_input,
"attention_dropout": cfg.attention_dropout,
"mask_length": cfg.mask_length,
"mask_prob": cfg.mask_prob,
"mask_selection": cfg.mask_selection,
"mask_other": cfg.mask_other,
"no_mask_overlap": cfg.no_mask_overlap,
"mask_channel_length": cfg.mask_channel_length,
"mask_channel_prob": cfg.mask_channel_prob,
"mask_channel_selection": cfg.mask_channel_selection,
"mask_channel_other": cfg.mask_channel_other,
"no_mask_channel_overlap": cfg.no_mask_channel_overlap,
"encoder_layerdrop": cfg.layerdrop,
"decoder_layerdrop": cfg.decoder_layerdrop,
"feature_grad_mult": cfg.feature_grad_mult,
"decoder_dict_size": len(tgt_dict) if cfg.add_decoder else -1,
"share_decoder_input_output_embed": cfg.share_decoder_input_output_embed,
"share_s2t_t2t_embeddings": cfg.share_s2t_t2t_embeddings,
"load_pretrained_w2v_from": None,
"load_pretrained_mbart_from": None,
"adaptor_stride": cfg.adaptor_stride,
}
if cfg.w2v_args is None:
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
w2v_args = state.get("cfg", None)
if w2v_args is None:
w2v_args = convert_namespace_to_omegaconf(state["args"])
cfg.w2v_args = w2v_args
else:
state = None
w2v_args = cfg.w2v_args
if isinstance(w2v_args, Namespace):
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)
if cfg.normalize != w2v_args.task.normalize:
logger.warn(
"Fine-tuning works best when data normalization is the same. "
"Please check that --normalize is set or unset for "
"both pre-training and here"
)
w2v_args.task.data = cfg.data
if hasattr(w2v_args.task, "text_cfg"):
w2v_args.task.text_cfg.data_config = None
w2v_args.task.add_decoder = cfg.add_decoder
task = tasks.setup_task(w2v_args.task)
if state is not None and "task_state" in state:
# This will load the stored "dictionaries" object
task.load_state_dict(state["task_state"])
model = task.build_model(w2v_args.model)
### delete the embed_tokens and output_projection of decoder
if state is not None and not cfg.no_pretrained_weights:
if cfg.retain_dict_path is not None:
assert model.add_text_modality, "Mustc have text modality if retain dict path"
logger.info("Cut embedding to a smaller size according to ratin dict")
with open(cfg.retain_dict_path, "rb") as fp:
overlap_idxs = pickle.load(fp)
state['model']['decoder.output_projection.1.weight'] = state['model']['decoder.output_projection.1.weight'][overlap_idxs]
state["model"]["decoder.embed_tokens_list.1.weight"] = state["model"]["decoder.embed_tokens_list.1.weight"][overlap_idxs]
if cfg.reuse_text_emb:
assert model.add_text_modality, "Mustc have text modality if reuse text embed"
logger.info("Loading text-text pretrained token-embedding for speech-text finetuning...")
state["model"]["decoder.embed_tokens_list.0.weight"] = state["model"]["decoder.embed_tokens_list.1.weight"]
del state["model"]["decoder.embed_tokens_list.1.weight"]
state["model"]["decoder.output_projection.0.weight"] = state["model"]["decoder.output_projection.1.weight"]
del state["model"]["decoder.output_projection.1.weight"]
try:
model.load_state_dict(state["model"], strict=True)
except Exception as e:
logger.warn(e)
model.load_state_dict(state["model"], strict=False)
else:
for pname in list(state["model"].keys()):
if pname.startswith("decoder.embed_tokens") or pname.startswith("decoder.output_projection"):
del state["model"][pname]
# set strict=False because we omit some modules
model.load_state_dict(state["model"], strict=False)
model.remove_pretraining_modules(step2=True)
super().__init__(task.source_dictionary)
d = w2v_args.model.encoder_embed_dim
self.w2v_model = model
self.final_dropout = nn.Dropout(cfg.final_dropout)
self.freeze_finetune_updates = cfg.freeze_finetune_updates
self.freeze_decoder_updates = cfg.freeze_decoder_updates
self.num_updates = 0
if cfg.share_ctc_decoder_embed:
assert cfg.add_decoder and cfg.share_decoder_input_output_embed, "Must share decoder input and output embed before share ctc and decoder embed"
if isinstance(self.w2v_model.decoder, MultimodalTransformerDecoder):
self.proj = nn.Linear(
self.w2v_model.decoder.embed_tokens_list[0].weight.shape[1],
self.w2v_model.decoder.embed_tokens_list[0].weight.shape[0],
bias=False,
)
self.proj.weight = self.w2v_model.decoder.embed_tokens_list[0].weight
else:
self.proj = nn.Linear(
self.w2v_model.decoder.embed_tokens.weight.shape[1],
self.w2v_model.decoder.embed_tokens.weight.shape[0],
bias=False,
)
self.proj.weight = self.w2v_model.decoder.embed_tokens.weight
elif tgt_dict is not None:
self.proj = Linear(d, len(tgt_dict))
elif getattr(cfg, "decoder_embed_dim", d) != d:
self.proj = Linear(d, cfg.decoder_embed_dim)
else:
self.proj = None
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
def forward(self, source=None, src_tokens=None, src_lengths=None, padding_mask=None, prev_output_tokens=None, tbc=True, **kwargs):
assert source is not None or src_tokens is not None
if source is not None:
### 1. go speech cnn-encoder-decoder branch
ft = self.freeze_finetune_updates <= self.num_updates
w2v_args = {
"source": source,
"padding_mask": padding_mask,
"mask": self.apply_mask and self.training,
"prev_output_tokens": prev_output_tokens,
"ft": ft,
}
if self.freeze_decoder_updates <= self.num_updates:
self.w2v_model.add_decoder = True
else:
self.w2v_model.add_decoder = False
x, padding_mask, decoder_out = self.w2v_model.extract_features(**w2v_args)
if tbc:
# B x T x C -> T x B x C
x = x.transpose(0, 1)
x = self.final_dropout(x)
if self.proj:
x = self.proj(x)
return {
"encoder_out": x, # T x B x C
"encoder_padding_mask": padding_mask, # B x T
"padding_mask": padding_mask,
"decoder_out": decoder_out,
}
else:
### 2. go text encoder-decoder branch
w2v_args = {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"prev_output_tokens": prev_output_tokens,
}
return self.w2v_model(**w2v_args)
def get_normalized_probs_decoder(self, net_output, log_probs, sample=None):
# net_output['encoder_out'] is a (B, T, D) tensor
return self.w2v_model.get_normalized_probs(net_output, log_probs, sample)
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out["encoder_out"] is not None:
if isinstance(encoder_out["encoder_out"], list):
encoder_out["encoder_out"] = (
[] if len(encoder_out["encoder_out"]) == 0
else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
)
else:
encoder_out["encoder_out"] = encoder_out[
"encoder_out"
].index_select(1, new_order)
if encoder_out["encoder_padding_mask"] is not None:
if isinstance(encoder_out["encoder_padding_mask"], list):
encoder_out["encoder_padding_mask"] = (
[] if len(encoder_out["encoder_padding_mask"]) == 0
else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
)
else:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(0, new_order)
if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None:
if isinstance(encoder_out["decoder_out"], list):
encoder_out["decoder_out"] = (
[] if len(encoder_out["decoder_out"]) == 0
else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]]
)
else:
encoder_out["decoder_out"] = encoder_out[
"decoder_out"
].index_select(0, new_order)
if "encoder_out_for_ctc" in encoder_out and encoder_out["encoder_out_for_ctc"] is not None:
if isinstance(encoder_out["encoder_out_for_ctc"], list):
encoder_out["encoder_out_for_ctc"] = (
[] if len(encoder_out["encoder_out_for_ctc"]) == 0
else [x.index_select(1, new_order) for x in encoder_out["encoder_out_for_ctc"]]
)
else:
encoder_out["encoder_out_for_ctc"] = encoder_out[
"encoder_out_for_ctc"
].index_select(1, new_order)
return encoder_out
def forward_torchscript(self, net_input):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
encoder_out = self.w2v_model.forward_torchscript(net_input)
assert self.proj is not None
encoder_out['encoder_out_for_ctc'] = [self.proj(encoder_out['encoder_out'][0])]
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return None
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
|