File size: 10,032 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------

"""
    wav2vec encoder adding relitive position bias, modified from 
    https://github.com/microsoft/SpeechT5/blob/main/Speech2C/speech2c/models/modules/transformer_encoder.py
    https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/wav2vec/wav2vec2.py
"""

import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.dataclass import ChoiceEnum
from fairseq.modules import (
    LayerNorm,
    SamePad,
)
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from fairseq.modules.transformer_sentence_encoder import init_bert_params
from fairseq.utils import index_put
from fairseq.distributed import fsdp_wrap
from fairseq.models.wav2vec.utils import pad_to_multiple

## reload multi-head attition with rel-pos-bias
from fairseq.models.wav2vec.wav2vec2 import TransformerEncoder as W2vTransformerEncoder
from speechlm.modules.relative_pos_enc import RelativePositionalEncoding
from speechlm.modules.multihead_attention import MultiheadAttention

EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"])
MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"])


class TransformerEncoder(W2vTransformerEncoder):
    def __init__(self, args):
        super().__init__(args)

        self.dropout = args.dropout
        self.embedding_dim = args.encoder_embed_dim
        self.required_seq_len_multiple = args.required_seq_len_multiple
        self.use_rel_pos_enc = getattr(args, "use_rel_pos_enc", False)

        self.pos_conv = nn.Conv1d(
            self.embedding_dim,
            self.embedding_dim,
            kernel_size=args.conv_pos,
            padding=args.conv_pos // 2,
            groups=args.conv_pos_groups,
        )
        dropout = 0
        std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
        nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
        nn.init.constant_(self.pos_conv.bias, 0)

        self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
        self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())

        layers = []
        for _ in range(args.encoder_layers):
            layer = TransformerSentenceEncoderLayer(
                embedding_dim=self.embedding_dim,
                ffn_embedding_dim=args.encoder_ffn_embed_dim,
                num_attention_heads=args.encoder_attention_heads,
                dropout=self.dropout,
                attention_dropout=args.attention_dropout,
                activation_dropout=args.activation_dropout,
                activation_fn=args.activation_fn,
                layer_norm_first=args.layer_norm_first,
                has_relative_attention_bias=self.use_rel_pos_enc,
            )
            if args.checkpoint_activations:
                layer = fsdp_wrap(layer)
                layer = checkpoint_wrapper(layer)
            layers.append(layer)
        self.layers = nn.ModuleList(layers)

        self.layer_norm_first = args.layer_norm_first
        self.layer_norm = LayerNorm(self.embedding_dim)
        self.layerdrop = args.encoder_layerdrop
        if self.use_rel_pos_enc:
            self.pos_emb = RelativePositionalEncoding(args.encoder_embed_dim // args.encoder_attention_heads, 160)


        self.apply(init_bert_params)

    def forward(self, x, padding_mask=None, layer=None):
        x, layer_results = self.extract_features(x, padding_mask, layer)

        if self.layer_norm_first and layer is None:
            x = self.layer_norm(x)

        return x, layer_results

    def extract_features(self, x, padding_mask=None, tgt_layer=None):

        if padding_mask is not None:
            x = index_put(x, padding_mask, 0)

        x_conv = self.pos_conv(x.transpose(1, 2))
        x_conv = x_conv.transpose(1, 2)
        x = x + x_conv

        if not self.layer_norm_first:
            x = self.layer_norm(x)

        # pad to the sequence length dimension
        x, pad_length = pad_to_multiple(
            x, self.required_seq_len_multiple, dim=-2, value=0
        )
        if pad_length > 0 and padding_mask is None:
            padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
            padding_mask[:, -pad_length:] = True
        else:
            padding_mask, _ = pad_to_multiple(
                padding_mask, self.required_seq_len_multiple, dim=-1, value=True
            )
        x = F.dropout(x, p=self.dropout, training=self.training)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        if self.use_rel_pos_enc:
            x_len = x.shape[0]
            pos_seq = torch.arange(0, x_len).long().to(x.device)
            pos_seq = pos_seq[:, None] - pos_seq[None, :]
            pos_k, pos_v = self.pos_emb(pos_seq)
        else:
            pos_k = None

        layer_results = []
        r = None
        for i, layer in enumerate(self.layers):
            dropout_probability = np.random.random()
            if not self.training or (dropout_probability > self.layerdrop):
                x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_k)
                if tgt_layer is not None:
                    # unpad if needed
                    if pad_length > 0:
                        layer_results.append(
                            (
                                x[:-pad_length],
                                z[:, :-pad_length, :-pad_length]
                                if z is not None
                                else z,
                            )
                        )
                    else:
                        layer_results.append((x, z))
            if i == tgt_layer:
                r = x
                break

        if r is not None:
            x = r

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)
        # undo paddding
        if pad_length > 0:
            x = x[:, :-pad_length]

        return x, layer_results


class TransformerSentenceEncoderLayer(nn.Module):
    """
    Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
    models.
    """

    def __init__(
        self,
        embedding_dim: float = 768,
        ffn_embedding_dim: float = 3072,
        num_attention_heads: float = 8,
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        activation_fn: str = "relu",
        layer_norm_first: bool = False,
        has_relative_attention_bias: bool = False,
    ) -> None:

        super().__init__()
        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.dropout = dropout
        self.activation_dropout = activation_dropout

        # Initialize blocks
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.self_attn = MultiheadAttention(
            self.embedding_dim,
            num_attention_heads,
            dropout=attention_dropout,
            self_attention=True,
        )

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(self.activation_dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.layer_norm_first = layer_norm_first

        # layer norm associated with the self attention layer
        self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
        self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
        self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)

        # layer norm associated with the position wise feed-forward NN
        self.final_layer_norm = LayerNorm(self.embedding_dim)

        if has_relative_attention_bias:
            self.norm_k = LayerNorm(self.embedding_dim//num_attention_heads)

    def forward(
        self,
        x: torch.Tensor,
        self_attn_mask: torch.Tensor = None,
        self_attn_padding_mask: torch.Tensor = None,
        need_weights: bool = False,
        att_args=None,
        pos_bias=None,
    ):
        """
        LayerNorm is applied either before or after the self-attention/ffn
        modules similar to the original Transformer imlementation.
        """
        residual = x

        if self.layer_norm_first:
            x = self.self_attn_layer_norm(x)
            if pos_bias is not None:
                pos_bias = self.norm_k(pos_bias)
            x, attn = self.self_attn(
                query=x,
                key=x,
                value=x,
                key_padding_mask=self_attn_padding_mask,
                attn_mask=self_attn_mask,
                position_bias=pos_bias,
            )
            x = self.dropout1(x)
            x = residual + x

            residual = x
            x = self.final_layer_norm(x)
            x = self.activation_fn(self.fc1(x))
            x = self.dropout2(x)
            x = self.fc2(x)
            x = self.dropout3(x)
            x = residual + x
        else:
            x, attn = self.self_attn(
                query=x,
                key=x,
                value=x,
                key_padding_mask=self_attn_padding_mask,
                position_bias=pos_bias,
            )

            x = self.dropout1(x)
            x = residual + x

            x = self.self_attn_layer_norm(x)

            residual = x
            x = self.activation_fn(self.fc1(x))
            x = self.dropout2(x)
            x = self.fc2(x)
            x = self.dropout3(x)
            x = residual + x
            x = self.final_layer_norm(x)

        return x, attn